
34 Telfor Journal, Vol. 12, No. 1, 2020. 

 
Abstract — Comprehending a huge execution trace is not a 

straightforward task due to the size of data to be processed. 
Detecting and removing utilities are useful to facilitate the 
understanding of software and decrease the complexity and 
size of the execution trace. The goal of this study is to develop 
a novel technique to minimize the complexity and the size of 
traces by detecting and removing utilities from the execution 
trace of object-oriented software. Two novel utility detection 
class metrics were suggested to decide the degree that a 
specific class can be counted as a utility class. Dynamic 
coupling analysis forms the basis for the proposed technique 
to address object-oriented features. The technique presented 
in this study has been tested by two case studies to evaluate the 
effectiveness of the proposed technique. The results from the 
case studies show the usefulness and effectiveness of our 
technique. 

Keywords — Utility Classes, Software Comprehension, 
Dynamic Coupling Analysis, Object-Oriented Software. 

I. INTRODUCTION 

ODERN software systems are characterized by being 
complex and large-sized. Maintenance of these 

systems is therefore a very difficult process. In particular, 
the understanding process is an essential requirement of 
software maintenance before making any modification [1]. 
Many studies have demonstrated that understanding 
activity consumes about two-thirds of the maintenance cost 
[2], [3], [4]. Hence, software understanding should be 
supported by several tools and techniques in order to 
achieve maintenance success and reduce its cost [3]. 

Most approaches to program comprehension can be 
classified into dynamic analysis and static analysis [5]. 
Dynamic analysis is based on analyzing the gathered 
information during the program execution. Alternatively, 
static analysis is based on analyzing the program source 
code without any execution. Both static and dynamic 
approaches have the power to make the comprehension 
process simpler, cheaper, and more efficient. However, 
static analysis techniques are not completely precise, 
particularly in the context of object-oriented systems [6]. 
Object-oriented features as late binding and polymorphism 
make it difficult to understand without using dynamic 
analysis [6], [7]. 

Dynamic analysis, the focus of this study, revolves 
around the analysis of the traces generated by running the 
features of the program under study. In spite of the 
advantages of execution trace analysis however, it is 
frequently characterized by massive amounts of generated 
data that delay any feasible analysis. A large amount of 
trace data is not very important to the comprehension 
process, especially in regard to the utility components [5]. 
In order to extract the core functionality of execution traces 
without losing their main characteristics, many techniques 
have been proposed, the success of which depends on 
reducing the non-useful elements, such as utilities [8], [9]. 
This paper aims to propose two novel utility detection 
metrics to detect utility classes using dynamic coupling 
analysis. 

This study is structured as follows: The related work is 
presented in Section 2. Section 3 introduces the necessary 
definitions for our technique. Two powerful utility class 
detection metrics are proposed in Section 4. A case study is 
presented in Section 5. Finally, we conclude this paper with 
a discussion of future research. 

II. RELATED WORK 

Dynamic analysis means inspection of systems behavior 
by investigating their runtime data. Runtime data shows 
many aspects of the behavior of the software code, for 
instance, the coding flow and control flow [10].Runtime 
data is very useful in understanding systems functionalities 
by inspecting their behavior. Dynamic analysis has been 
selected in our study for several reasons [11]: 
• Dynamic analysis supports a goal-oriented policy. 
• Dynamic analysis can accurately deal with late binding 

and polymorphism. 
• Object-oriented software has a dynamic structure that 

differs from a static structure. 
• Dynamic analysis can go beyond the problems of 

infeasible paths and dead codes. 
The goal-oriented policy means that just those interesting 

parts of the program code should be analyzed. This policy 
is effective in determining which parts precisely relate to 
the specific functionality of the program code. 
Polymorphism literally means a state of having many 
forms. Polymorphism is the feature of being able to assign 
a single name to present different meanings or usages in 
different contexts [11]. In programming contexts, different 
behavior can be expressed by a single name. Even though 
this procedure is effective in a programming context, it 
disturbs the understanding process because it postpones the 
accurate behavior of the program code in runtime. Hence, 
rather than taking into account all theoretical cases, a 

A New Technique for Understanding 
Large-Scale Software Systems 

Thamer Al-Rousan and Hasan Abualese 

M

Paper received September 03, 2019; revised July 13, 2020; accepted 
July 17, 2020. Date of publication July 31, 2020. The associate editor 
coordinating the review of this manuscript and approving it for 
publication was Prof. Miroslav Lutovac. 

 
Thamer Al-Rousan is with the Faculty of Information Technology, 

Isra University, Jordan (e-mail: thamer.rousan@iu.edu.jo).  
Hasan Abualese is with the Faculty of Information Technology, 

World Islamic Sciences and Education University, Jordan 
(hasan.abualese@wise.edu.jo). 



Al-Rousan and H. Abualese: A New Technique for Understanding Large-Scale Software Systems 35 

dynamic analysis should be able to determine the real cases 
that are executed. In object-oriented software, the dynamic 
structures usually form the "Spaghetti Architectures" 
phenomenon. The dynamic structures comprise very 
complex interwoven connections of relationships between 
the software entities. Therefore, the dynamic structures are 
quite different from static structures. Infeasible paths and 
dead codes happen to some extent in all applications. The 
applications contain methods and classes which are no 
longer in use, but that have not been eliminated from the 
source code. Static coupling tools will analyze all of the 
code under analysis, so that measurements may have 
become inaccurate [12]. 

In dynamic analysis, the event traces are collected into a 
file labeled as “an execution trace file” during the running 
of the program [13]. The size of the execution trace is a key 
challenge that faces the dynamic analysis technique [14]. 
Therefore, in order to make the dynamic analysis more 
efficient, it is important to decrease the size of the trace data 
without losing its main features. In dynamic analysis, many 
techniques have been proposed to face this challenge such 
as the sampling technique, clustering technique, 
visualization techniques, and the utility detection and 
removal technique.  

The idea of the sampling technique is based on executing 
a number of samples from event traces instead of executing 
the whole trace file. The sample events are selected 
randomly or by employing a customized procedure. The 
problem with this technique is that some of the main events 
might have been missed using this technique [15]. 

In the clustering technique, the events are grouped based 
on specific criteria [16]. Depending on the objects under 
study, the events are grouped by using a number of rules in 
order to make the understanding of the trace easier. The 
outcome of this technique is a different set of clusters that 
may make the understanding of the trace easier.  

Detection and removal of utility modules that have a bad 
impact on the relationships between other modules can be 
considered as an essential trace data reduction technique 
[9]. Detection and removal of utility modules will decrease 
the size of the trace event and make the data more favorable 
in terms of understanding the program. However, detecting 
and removing utilities is not a simple task, especially, when 
the maintenance phase is accomplished under many 
maintenance rounds. 

Few studies have been designed to detect the utility 
modules. Nevertheless, the majority of them employ static 
fan-in approaches based on static graphs. The study of 
Meszaros [17] denotes that the utility modules are 
ubiquitous and these modules have a bad impact on the 
understanding of the relationships between the system 
modules. Consequently, Meszaros recommends they may 
be removed in order to obtain a good understanding of the 
software structure. Despite this, the author didn’t present 
any metrics to express utility modules. 

The QNX software engineers have developed an intuitive 
concept such that utilities can be packaged or grouped 
together in a class, a library, or in another form [8]. In fact, 
some utilities are usually not grouped in certain modules. 
For example, in most classes, the accessing methods can be 

counted as utilities while the classes that include them are 
not necessarily utilities. 

The [8] study used the content selection to extract a 
summary of important content from a trace by eliminating 
unnecessary details. The important content is usually 
selected from a trace document by classifying the document 
phrases based on their importance. The importance is 
measured by using different techniques, for instance: word 
distribution, cue phrases, and the place of phrases in the 
trace document [18]. The study used brainstorming sessions 
to answer the main question which is: what constitutes the 
most important content of trace. The content generalization 
consists of allocating a high-level description to specific 
content; specifically, exchanging it with more abstract info. 
However, in this study, the author did not present any metric 
to express the utility modules.  

Trace summarization has been defined by Hamou-Lhadj 
et al. [9] as an abstract description of the trace results by 
removing unwarranted details such as utility modules. The 
main goal of trace summarization is to extract a view of a 
trace that testers can easily work with when attempting to 
understand the most important information traced. The 
Hamou-Lhadj study combined the fan-in and fan-out 
techniques to define the utilities. The summarization of the 
trace is the initial attempt to declare a detection utility 
metric. Nevertheless, their detection metrics still use static 
fan-out and fan-in techniques which have less precision in 
object-oriented software. 

Understanding a huge trace is not a straightforward task 
due to the size and complexity of the data to be processed. 
Not all implementation specifics will be counted as utilities. 
Using existing detection techniques that are dependent on 
static techniques will still result in less accurate detection of 
utilities in object-oriented systems. In the following 
sections, this study proposes a new technique to detect the 
utilities in object-oriented systems by using dynamic 
analysis as a guide to decide the degree that a specific class 
can be counted as a “utility class.” 

III. EXECUTION TRACES ANALYSIS TECHNIQUES 

The generated information from the execution of the 
program code is normally saved in an execution trace file. 
In recent object-oriented systems, the execution files are 
extremely huge. In particular, complexity and size are key 
factors that have negative impacts on software maintenance 
and software comprehension [19]. So as to simplify the 
execution traces and reduce the time and effort required for 
the software maintenance process, there is a need to use 
trace analysis techniques . 

This study proposes a new technique for trace analysis 
that makes the process of comprehension easier. The new 
trace analysis technique is based on filtering out of the 
utility modules which can disturb the relations between 
other modules of the execution trace. Dynamic coupling 
measurements were used in our proposed technique as an 
indicator to determine which modules could be counted as 
utilities. The next subsections present the required 
definitions for our techniques.  



36 Telfor Journal, Vol. 12, No. 1, 2020. 

A. Operational Definition of Utilities 
There is no common definition of the term “utility.” The 

operational definition defined by Hamou-Lhadj et al. [8] 
was applied in this study which is: “Any modules of a 
software system designed for the suitability of the 
implementer and designer and it can be accessed from 
different places within certain program scope”. 

Utilities are used to provide support to the functions that 
implement the core functionality, and they do not have a 
critical role in the flow control of the program. A lot of 
utilities are designed to be reused or invoked by several 
other modules. Based on the Hamou-Lhadj et al. [8] 
definition, a utility could be a class, package, method, or 
another element. It may also be accessed from more than 
one place. In addition, this definition permits the accessing 
methods to be counted as utilities, and does not need to be 
grouped in any way, even though it does not prevent that. 

B. Utility Detection using Dynamic Coupling 
This study aims at employing the “dynamic coupling 

measures” to improve the program comprehension process. 
Dynamic coupling measures can capture the actual coupling 
behaviors in an object-oriented system as they are analyzed 
from data generated during runtime. Dynamic coupling 
measures have varied classifications, depending on the 
context of the application in which such measures are to be 
applied [20]. Thus, it is significant to determine which 
dynamic measures can accomplish this goal. To achieve 
this, this study employs a common framework proposed by 
Arisholm [21] which is widely used in dynamic coupling 
measures. The Arisholm framework describes coupling 
according to the three criteria: Scope, Granularity, and 
Entity of the measurement. For the purposes of this study, 
we refined these criteria as: 
• The entity of measurement: the study concentrates on 

how testers attempt to understand the software 
program. In this trend, the testers always select the 
class level rather than object-level because the entities 
at the class level are more recognizable in the software 
system, so the study will employ the classes as a 
measurement entity. 

• Granularity: since the study selects the classes as a 
measurement entity, so the granularity level must be a 
class or its objects.  

• Scope: the study considered the execution trace file as 
the scope of measurement. While the execution trace file 
is generated based on scenarios that cover one feature or 
more. The testers have the freedom to define their sub-
scopes, so the testers can concentrate on only the 
interesting parts of the execution trace instead of the 
whole execution trace. 

Dynamic coupling is intended to be measured in two 
forms: IC (import coupling) or EC (export coupling) 
depending on the direction of the method calls. Import 
coupling counts the messages which are sent from an object 
or class. Export coupling counts the messages which are 
received by an object or class [22]. As this study is 
interested in both directions (import and export coupling), 
to determine the utilities and level of granularity, the study 
adopted two metrics of the Arisholm framework. 
a) Export Coupling-Distinct Class (EC_CC): this metric 

calculates the number of distinct classes to which a class 

A has received messages in a given scenario. EC_CC 
stands for Export Coupling-Class level-Distinct 
Classes.  

b) Import Coupling-Distinct Classes (IC_CC): this metric 
calculates the number of distinct classes that methods 
of a given class A have sent messages in a given 
scenario. 

IV. METRICS FOR DETECTING UTILITY CLASSES 

The majority of dynamic coupling metrics, such as 
metrics in the Arisholm framework, are used to evaluate 
the overall service of quality according to its coupling, only 
very few calculate the significance of the modules in the 
comprehension practice [23]. In this regard, our study 
proposes two detection metrics to improve the 
comprehension process. The first detection metric took into 
consideration only one direction of coupling (namely 
export coupling), while, the second detection metric takes 
into consideration the coupling in both directions (import 
and export coupling). In the following subsections, the 
study will discuss in detail these detection metrics. 

A. Detection Metric for Export Utility Classes 

The next metric was defined by this study to calculate to 
what extent a certain class may be counted as a utility. The 
metric for export utility for a given class C is: 

    
 

_

_ _

EC CC c
EUC c

Max EC CC c
  (1) 

where: EUC(c) - Export Utility Classes metric for a given 
class C; EC_CC(c) - the number of calls between objects of 
class C and the rest of classes in the execution trace; 
Max_EC_CC(c) - the highest possible value for EC_CC(c) 
in the execution trace. 

In our export metric, the measure of export coupling 
(EC_CC()) was defined for a certain class with a range 
between 0 and the total amount of methods in the rest of 
classes in the execution trace. Particularly, EC_CC() 
calculates the amount of "(m2, c2, c1) triples". The 
technique indicates to the highest value of the EC_CC() 
metric by Max_ EC_CC(). Consequently, to restrict the 
"peak value" to 1 the technique divides EC_CC() by 
Max_EC_CC(). Consequently, we can easily distinguish 
between utilities and non-utilities. It is important to mention 
that the value will be different from one class to another 
because the Max_EC_CC() does not count the local 
operations. 

The EUC metric has a range from 0 to 1. In the execution 
trace, the EUC value is equal to 0 when a certain class 
doesn’t deliver any services to other classes, which implies 
that class isn't a “utility class” as specified by the definition 
of utility. In contrast, when the EUC metric converges to 1, 
this means that the class provides a lot of services to 
different classes existing in the execution trace. 
Consequently, based on the EUC metric, the class with the 
highest measured value most likely will be the utility class. 
Actually, the EUC metric can determine the most coupled 
classes, which can be considered to be a new contribution 
to our metric. This can help the testers to understand the 
significance of the classes. 

It is important to mention that during the comprehension 



Al-Rousan and H. Abualese: A New Technique for Understanding Large-Scale Software Systems 37 

process, extracting the candidate utility class is not easy and 
is in fact risky. This is because different testers have a 
different understanding of the software functions and 
different concerns as of the software details [24]. Thus, 
what can be considered as a utility to one tester may not be 
considered as such to another tester. Consequently, the EUC 
metric can be used as a technique to make decisions 
regarding what can be considered as utilities.  

B. Detection Metric for "Export-Import" Utility Classes 
"EIUC" 
EIUC takes into consideration the coupling in both 

directions (export and import coupling). The reason behind 
adopting this metric is: there is a positive relationship 
between outgoing calls of a certain class and their 
importance to control the flow of the object-oriented 
system. This means that: if the amount of outgoing calls 
from a certain class is high, then its role in the program 
control flow is very important and thus there is a greater 
need to keep it. On the other hand, the relationship between 
import coupling and the utility concept is negative, this 
means that more outgoing calls indicate a lower probability 
of it being a utility class. 

It is remarkable to mention that the import coupling is 
less important to the utility concept compared with export 
coupling. Thus, in our utility detection metrics, the study 
gives less weight to the import coupling.  

In our study, in order to calculate the import coupling, we 
use the log function which is inspired by the famous 
technique called “tf-idf weight” [25]. Tf-idf is short for the 
term “frequency-inverse document frequency,” and the tf-
idf weight is often used in searches for information 
retrieval, text mining, and user modeling techniques. 
Therefore, The Import-Part (IP) for a certain class C can be 
expressed as follows: 

    
 

_ _
Log

_

Max IC CC c
IP c

IC CC c

 
   

 
 (2) 

where: IC_CC(c) - the number of distinct classes that be 
utilized by methods of the object of a class C in the 
execution trace. These values must be placed in the 
denominator because the relationship between import 
coupling and the utility concept is negative; 
Max_IC_CC(c) - the highest possible value for IC_CC(c) in 
the execution trace. 

If the IC_CC value closes to the Max_IC_CC value then 
class C has strong import coupling, so the 
IP(c) = Log(1) = 0. While, if class C has weak import 
coupling (that is “close to 1”), the value of IP(c) will be 
inclined to equivalent to Log(Max_IC_CC(c)). To eliminate 
division by zero, we eliminate IC_CC=0. 

To guarantee that the definitive consequence of IP(c) 
ranges amongst 0 and 1, we divide the IP weight by its 
highest value. Thus, the Final-Import-Part (FIP) can be 
expressed as: 

  

 
 

  

_ _
Log

_

Log _ _

Max IC CC c

IC CC c
FIP c

Max IC CC c

 
  
   (3) 

The Export-Import utility Class (EIUC) will exploit the 

Export Utility Metric (EUC) via multiplying it by the FIP 
value that takes into account the import coupling if it exists; 
else, EIUC will be equivalent to the EUC metric. 
Consequently, we refine EIUC for a certain class C in this 
way: 

    
 

, if 0

if 0

EUC c FIP IC CC
EIUC c

EUC c IC CC

      
 (4) 

The export coupling will be dismissed if the FIP() value 
is near to 0, which means that the import coupling in class 
is strong. In this circumstance, the C class mustn’t be 
counted as a “utility” because the C class has many “control 
dependencies.” On the other hand, when import coupling in 
a certain class is very weak (FIP() value close to 1), then 
the value of its export coupling will be the only scale to 
assess the degree to which that C class will be counted as 
“utility class.” 

V. CASE STUDIES 

In this section, two case studies are presented in order to 
evaluate the effectiveness of the proposed work. For the 
former one, we used an open-source tool called Checkstyle 
[26]. Checkstyle is a Java-based tool that validates Java 
code and confirms if a Java source code employs coding 
standards. It contains 58,000 lines of code to represent 21 
packages and 311 classes. Thus, it is counted to be a good 
representation of actual software systems. Furthermore, the 
results of this experiment can be repeated, as Checkstyle is 
an "open-source" system and its execution traces are 
provided in a common dataset benchmark. For the latter 
case study, we used JHotDraw [27]. JHotDraw is a 
customizable Java framework that distinguished for 
graphics editing. It comprises 73,000 lines of code to 
represent 21 packages and 344. 

A. Usage Scenario 

Because of that individual datasets result in several 
drawbacks such as the limited generalization of the 
evaluation results and the uncertainty of the sound of the 
individual datasets [28] [29]. We opted to use execution 
traces of Checkstyle and JHotDraw from a common 
dataset benchmark. The execution traces are generated from 
executing Checkstyle and JHotDraw to specific scenarios. 
For example, Checkstyle was executed from the command 
line where 64 types of checks are specified. Whilst, a new 
drawing was created in JHotDraw, then 5 distinct figures 
were added. Subsequently, the size of the generated 
Checkstyle execution trace has 107 classes, 1243 methods, 
and 31,260 calls. We opted to remove self-callings and 
library classes, therefore, the new execution trace has 100 
classes, 798 methods, and 11,632 calls. In addition, the size 
of the generated JHotDraw execution trace has 161,087 
calls after removing mouse movement events. Also, we 
opted to remove self-callings and library classes, therefore 
the new execution trace has 53,638 calls. 

B. Quantitative results 
Table 1 and Table 2 present the results of applying the 

"proposed utility detection metrics" to the Checkstyle and 
JHotDraw execution traces respectively. The info is 
organized in descending consistently with the EIUC value. 



38 Telfor Journal, Vol. 12, No. 1, 2020. 

Therefore, classes that appear in front could be considered 
as utilities, while classes that appear at the end are non-
utility classes. For example, Table 1 shows that there is no 
chance for TreeWalker and ConfigurationLoader classes to 
be utilities because they sit at the bottom of the table. 
Whilst, DefaultContext, DefaultConfiguration, DetailAST 
classes are candidate utility classes because they sit at the 
top of the table. The same observations could be applied to 
Table 2. 

The results in the two case studies conform to the results 
in Cornelissen's study [30]. Hence, the proposed technique 
has the capability to classify classes of object-oriented 
systems consistent with their probability of being candidate 
utilities and put them at the highest point of the ranking 
table. 

Nevertheless, we have to set some parameters to guide 
the process. For example, a parameter is optionally required 
to enable us to concentrate on particular portions of the 
execution trace. This is important when analyzing very 
large execution traces that comprise several features. 
Hence, we can analyze only a specific feature, exclude a 
specific feature, or analyze the features separately. 
Another very important parameter is the size ratio 
parameter (SR) to decide the number of classes that we wish 
to appear in the final execution trace (CA). For example, if 
the size of the original execution traces is represented by the 
total number of its classes (CT), then CA = CT * SR. 

We randomly chose SR=80% for Checkstyle and 
JHotDraw execution traces which means that only the 
events of 80classes (out of 100 classes) will appear in the 
final Checkstyle execution trace and only the events of 90 
classes (out of 112 classes) will appear in the final 
JHotDraw execution trace. Consequently, the final 
execution traces contain only 4,372 calls (37% of the 
original size) and 170 calls (0.32% of the original size) 
respectively. 

The aforementioned results show that 20% of the 
Checkstyle execution trace classes are responsible for 
nearly 63% of the interactions within the execution trace 
and 20% of the JHotDraw execution trace classes are 
responsible for nearly 99.68% of the interactions within the 
execution trace. The results show that the value of the SR 
parameter should not be fixed for all case studies. For 
example, what is adequate for one case study may not be for 
another. In addition, it should not be fixed for the same case 
study. For example, when the user gains some knowledge 
about the case study he may request to explore more details. 

However, the user may adjust the size ratio parameter if 
the simplified execution trace is inadequate. Therefore, the 
setting of this parameter is totally up to the user until it is 
suitable for the purpose at hand. In other words, the final 
execution trace should be customized on request (i.e. 
expanded or collapsed). In particular, we can easily adjust 
the size ratio parameter and apply the proposed technique 
again. For example, we can adjust the parameter value to 
95% for the JHotDraw execution trace if the final trace is 
too abstract or if we need to show some classes that are 
excluded for the first time. According to the adjusted 
parameter value, the final execution trace contains 31055 
calls (58% of the original size). Furthermore, if the final 

trace is too detailed or if we need to exclude more classes 
from the trace, the parameter can be adjusted again with less 
value. For example, if we choose SR=90%, then the final 
execution trace will contain 5,241 calls (less than 10% of 
the original trace). 

TABLE 1 CHECKSTYLE'S CLASSES SORTED 
DESCENDING ACCORDING TO EIUC ( ) VALUE. 

EUC( ) EIUC( ) CLASS NAME 

0.3316 0.3316 DefaultContext 

0.1968 0.1968 DefaultConfiguration 

0.131 0.131 DetailAST 

0.0816 0.0816 FullIdent 

  
. 
. 
.

0.0102 0 TreeWalker 
0 0 grammars.GeneratedJavaLexer 

0 0 ConfigurationLoader 

0 0 PackageNamesLoader 

0 0 TreeWalker$SilentJavaRecognizer 

Sum of Methods= 798 
Number of total classes = 100 
Number of well-known library classes = 1 
Number of undesired classes = 0 
Number of classes involved in the analysis = 99 
Number of classes involved in the final trace file =80 

TABLE 2 JHOTDRAW'S CLASSES SORTED 
DESCENDING ACCORDING TO EIUC ( ) VALUE. 

EUC( ) EIUC( ) CLASS NAME 

0.2362   0.2362    NullDrawingView  
0.2358   0.2358    AbstractCommand$EventDispatcher 
0.3183   0.19    ZoomDrawingView 
0.1584   0.1584    MainClass 
0.1826   0.1384    AbstractTool$EventDispatcher 

  
. 
. 
.

0.0023 0.0016 StandardDrawing 
0.0023 0.0014 TextFigure 

0.0023 0.0012 DesktopEventService$1 

0.0023 0.0012 MDIDesktopPane$1 

0.0023 0.0009 StandardDisposableResourceManager 

Sum of Methods= 445 
Number of total classes = 112 
Number of well-known library classes = 0 
Number of undesired classes = 0 
Number of classes involved in the analysis = 112 
Number of classes involved in the final trace file =? 

VI. CONCLUSION 

Software Comprehension is a significant phase of 
software maintenance as problem comprehension is the 
main part of problem-solving. The contribution of this paper 
is to propose two novel utility detection metrics to detect 
utility classes for a certain scope of the specified execution 
trace. The goal of utility detection metrics is to improve 
understanding of the process and reduce the time and effort 
required for the software maintenance process. These metrics 



Al-Rousan and H. Abualese: A New Technique for Understanding Large-Scale Software Systems 39 

are based primarily on the dynamic coupling to capture object-
oriented system properties in runtime that static coupling cannot 
address them. The first detection metric takes into 
consideration only one direction of coupling (namely export 
coupling), while, the second detection metric takes into 
consideration the coupling in both directions (export and 
import coupling). 

We demonstrated our technique using two case studies, 
namely Checkstyle and JHotDraw execution traces, which 
were specifically chosen because of the availability of their 
execution traces in a common dataset benchmark. The 
quantitative results of our case studies have shown that our 
technique is able to automatically detect and remove utility 
classes.  

In particular, when we choose to filter out 20% of the total 
classes in Checkstyle execution trace, (i.e. the size ratio 
parameter = 80%), the original execution trace is reduced by 63% 
when interactions to the removed classes are excluded. In 
addition, the same result is reported when we filter out only 5% 
of the total classes in JHotDraw execution trace. The results 
prove that a small percentage of execution trace classes causes 
the execution trace to inflate to a very large size. 

Integrating this technique into a complete trace analysis 
framework will be our forthcoming contribution. The framework 
suggests the decoupling of the utility classes rather than simply 
removing them. The basic idea behind using decoupling is to 
prevent the creation of gaps in the structure of execution traces 
and to prevent the removal of some critical dependencies to utility 
classes.  

REFERENCES 

[1] E. Bousse, et al., "Advanced and Efficient Execution Trace 
Management for Executable Domain-Specific Modeling 
Languages," Software & Systems Modeling, vol. 17,  no. 1, pp. 1-37, 
2017.  

[2] C. Chapman, et al., "Exploring Regular Expressionsion 
Comprehension," in 32nd International Conference on Automated 
Software Engineering(ASE 17), 2017,pp.348-356.  

[3] D. Kauchak and G. Leroy, "Moving Beyond Readability Metrics for 
Health-Related Text Simplification," IEEE Journals & Magazines, 
vol. 17,  no. 1,  pp. 41-51, 2016.  

[4] J. Chhabra and V. Gupta, "Survey of Dynamic Software Metrics," 
Computer Science and Technology, vol 25, no. 4, pp. 1016-1029., 
2010.  

[5] H. Virdi and B. Singh, "Analysis of the Software Code based upon 
Coupling in the Software," in Third International Conference on 
Computing Communication & Networking Technologies 
(ICCCNT'12), 2012, pp.651-659.  

[6] I.Sommerville, Software Engineering. 10 edition., Pearson 
Education, 2016.  

[7] N. Al-Saiyd, "Source Code Comprehension Analysis in Software 
Maintenance," in 2017 2nd International Conference on Computer 
and Communication Systems (ICCCS),2017, pp. 1-5.  

[8] A. Hamou-Lhadj and T. Lethbridge, "Summarizing the Content of 
Large Traces to Facilitate the Understanding of the Behavior of a 
Software System," in 14th IEEE International Conference on 
Program Comprehension, 2006. 

[9] A. Hamou-Lhadj and T. Lethbridge, "Understanding the complexity 
embedded in large routine call traces with a focus on program 
comprehension tasks.," IET Software, vol. 9, no. 2, p. 61–177, 2010. 

[10] X. Xia, L. Bao, Z. Xing, E. Hassan, and S. Li, "Measuring Program 
Comprehension: A Large-Scale Field Study with Professionals, 
"IEEE Transactions on Software Engineering, vol. 44,  no.10,   2017.  

[11] L. Soares, et al., "Lightweight Process for Dynamic Inspection of 
Feature Interactions," in 12nd International Workshop on Variability 
Modelling of Software-Intensive Systems (VaMoS2018), Madrid, 
Spain, 2018.  

[12] F. Palomba and A. Zaidman, “Does Refactoring of Test Smells 
Induce Fixing Flaky Tests?,”," in 33rd International Conference. 
Software Maintenance and Evolution (ICSME 17), 2017,pp.167-175.  

[13] N. Ganesh and S. Babu, "Analysis of Static Coupling Versus 
Dynamic Coupling in a Distributed Object-Oriented System Based 
on Trace Events," World Engineering & Applied Sciences Journal, 
vol. 6, no. 1, pp. 91-95, 2015.  

[14] S. Jayaraman, et al., "Compact Visualization of Java Program 
Execution," Software: Practice and Experience, vol. 47, no. 2, pp. 
163-191, 2016.  

[15] L. Mengleng, et al., "Fault Localization Guided Execution 
Comparison for Failure Comprehension," in IEEE International 
Conference on Software Quality, Reliability and Security 
Companion, 2016.  

[16] Y. Jia and M. Harman, "An Analysis and Survey Of The 
Development of Mutation Testing," Transactions on Software 
Engineering, vol. 43, no. 5, p. 649–678, 2016.  

[17] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Pearson 
Education, 2007. 

[18] R. Chauhan and I. Singh, "Latest Research and Development on 
Software Testing Techniques and Tools," INPRESSCO International 
Journal of Current Engineering and Technology, 2014,pp.423-429.  

[19] T. Al-Rousan and H. Abualese, "Simplifying the Structural 
Complexity of Software Systems," Cybernetics and Information 
Technologies, Vol. 19, No. 3. 2019. 

[20] T. Al-Rousan and H. Abualese, "A New Technique for Utility-Class 
Detection in Object-Oriented Software," Tem Journal - Technology, 
Education, Management, Informatics, Vol.8, No.2. 2019. 

[21] E. Arisholm, et al., "Dynamic Coupling Measurement for Object-
Oriented Software," IEEE Transactions on Software Engineering, 
vol 30, no. 18, p. 491–506., 2004. 

[22] N. Bhateja, "A Study on Various Software Automation Testing 
Tools," International Journal of Advanced Research in Computer 
Science and Software Engineering, vo.l 5, no. 6, 2015.  

[23] H. Abualese, et al., "Utility Classes Detection Metrics For Execution 
Trace Analysis," in 8th International Conference on Information 
Technology (ICIT), Amman, 2017, 156-164. 

[24] H. Abualese, et al., "A Trace Simplification Framework," in 8th 
International Conference on Information Technology (ICIT), 
Amman, 2017, pp. 372-278.  

[25] S. Anand, "An Orchestrated Survey on Automated Software Test 
Case Generation," Journal of System and Software, vol. 78, no. 1, pp. 
1978-2001, 2013.  

[26] Checkstyle Tool, Available: http://checkstyle.sourceforge.net/. 
[Accessed 9- 4 -2018]. 

[27] JHotDraw Tool, Available: 
https://sourceforge.net/projects/jhotdraw//. [Accessed 25- 3 -2020]. 

[28] JK. Chhabra, and V. Gupta, "A Survey of Dynamic Software 
Metrics," Journal of Computer Science and Technology, 25(4), pp. 
1016-1029. 2010. 

[29] S. Pfleeger, "Software Engineering Theory and Practice", Pearson 
India, 2013. 

[30] B. Cornelissen, A. Zaidman and A. van Deursen, "A Controlled 
Experiment for Program Comprehension through Trace 
Visualization," IEEE Transactions on Software Engineering, vol. 37, 
no. 3, pp. 341-355, May-June 2011. 

 


