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Abstract — Higher levels of autonomous driving are 

bringing sophisticated requirements and unpredicted 
challenges. In order to solve these problems, the set of 
functionalities in modern vehicles is growing in terms of 
algorithmic complexity and required hardware. The risk of 
testing implemented solutions in real world is high, expensive 
and time consuming. This is the reason for virtual automotive 
simulation tools for testing are heavily acclaimed. Original 
Equipment Manufacturers (OEMs) use these tools to create 
closed sense, compute, act loop to have realistic testing 
scenarios. Production software is tested against simulated 
sensing data. Based on these inputs a set of actions is produced 
and simulated which generates consequences that are 
evaluated. This creates a possibility for OEMs to minimize 
design errors and optimize costs of the vehicle production 
before any physical prototypes are produced. This paper 
presents the development of simple C++/Python perception 
applications that can be used in driver assistance 
functionalities. Using ROS as a prototyping platform these 
applications are validated and tested with “Software-In-the-
Loop” (SIL) method. CARLA simulator is used as a generator 
for input data and output commands of the autonomous 
platform are executed as simulated actions within simulator. 
Validation is done by connecting Autoware autonomous 
platform with CARLA simulator in order to test against 
various scenes in which applications are applicable. Vision 
based lane detection, which is one of the prototypes, is also 
tested in a real world scenario to demonstrate the applicability 
of algorithms developed with simulators to real-time 
processing. 

Keywords — Autonomous driving, perception, ROS, 
CARLA, AUTOWARE, SIL, ADAS, C++, Python. 
 

I.INTRODUCTION 

EVELOPMENT of autonomous vehicles is a major trend 
in automotive industry. Pushing towards Society of 

Automotive Engineers (SAE) levels [1] four and five and 
fully automated vehicle as an ultimate product, engineers 
are facing issues that have never been addressed. As they 
progress with the development of some functionality new 
problems arise because of uncertainty of physical world, as 
there are many unpredicted situations that could cause 
accidents. Due to this, the development of virtual simulators 
to test vehicle’s cognitive computing [2] becomes a crucial 
part of the development. With this approach the perception 
module [3] receives input from computer-generated scenes 
and mathematically modelled movement patterns for 
pedestrians, bicycles, and other entities. An acting module 
[3] on the other side outputs commands to simulators that 
implement these as actions. Using this, billions of 
kilometres that are required [4] to demonstrate the 
reliability of autonomous vehicles in terms of fatalities and 
injuries, have been already simulated by OEMs [5]. By 
using simulator’s abstract visualizations, engineers can 
focus on the development of core capabilities for 
autonomous driving, such as: driving models and systems, 
remote assistance, mapping, localization, perception, etc. 

This paper emphasizes and explains the importance of 
using simulators in the modern automotive development 
and gives a practical example by showing how simple 
Advanced Driver Assistance Systems (ADAS) applications 
can be tested within the context. The rest of the material is 
organized as follows. The first part explains current state of 
the industry, problems and practices used. Also, it provides 
some academic and industry related as a background. The 
third section explains platforms and tools that are used for 
development and simulations. Section IV describes the 
purpose of test applications and presents an existing setup 
for connecting Autoware [6] with CARLA and describes 
sensor and start up file configuration. Section V presents 
validation for these use-cases in simulators and real world, 
and final section concludes the paper with the review of 
work done and some future steps. 

II.SIMULATORS 

 Simulators use different models of environments that can 
be built from high resolution LiDARs, cameras or even 
virtual maps that provide annotations with tools like 
OpenDRIVE [7]. Furthermore, some types of simulators 
can augment existing data like point cloud to create 
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obstacles [8]. Based on this, modern day simulators like 
rFpro [9], LGSVL [10], AVS [11] by Uber, CARLA [12], 
DRIVE CONSTELLATION Simulator [13] by NVIDIA, 
Gazebo [14] and others are able to create very realistic 
scenes and complex layouts like road paint or road 
separation that can be difficult to discern even for humans. 
On top of that, these ecosystems are scalable and can 
implement different feature requests, unlike early 
development tools of this type that stretch their capabilities 
to satisfy different use-cases. 

Simulators usually offer simulation of a wide variety of 
virtual sensors that can be placed on the ego vehicle to 
recreate real test vehicles. These sensors can provide a 
stream of different formats of data like LiDAR point clouds 
[15], RGB, HDR, depth in meters or material properties of 
objects and others. The data is produced based on a current 
scene in the simulator and virtual placement of the sensors. 

The problem with using synthesized and generated data 
comes from the stochastic nature of the real world by which 
it avoids patterns found in these types of data and can 
notably impair the performance of trained neural networks 
or prediction models. Simulators tend to overcome these 
problems by allowing stochastic behaviours to be injected 
with disruptive, low likelihood-of-occurrence events. This 
is utilized for example, by creating unpredictable 
behaviours for drivers, on some random number of driven 
kilometres. 

The ability to have a simulation that correlates closely 
with physical world, with different scenes, traffic flow and 
virtual sensors, provides engineers environment to create 
SIL [16] systems. This means that every entity like 
hardware, data, use-cases and such are simulated, whilst 
using production software to test against it. By testing some 
features earlier in the design cycle, that would otherwise 
require finished prototypes, changes are less expansive to 
implement, and problems are eliminated or predicted on 
time. Except these advantages, SIL testing also provides a 
level of certainty, because engineers can be sure that given 
behaviour is not due to any mechanical or electrical 
malfunctions but caused by a written software. 

 It is hard to say which simulators are “state-of-the-art” 
products, because these metrics can only be defined in the 
scope of requirements that are being tested. Raging from 
simulators for algorithm testing to sensor technology 
readiness level (TRL). However, latest simulators are being 
designed to work with a client-server architecture which is 
also the case with Gazebo and CARLA simulator. This 
approach generated a new set of scenarios where multiple 
ego vehicles can be used in the same scenes. Furthermore, 
an even bigger advantage is that a simulator can be cloud-
based, simplifying configurations, organizations and even 
providing opportunities for research to departments that are 
lacking the technical or finical resources. 

First, Gazebo is used, which is one of the most used 
simulators when working with Robot Operating System 
(ROS) [17] and connected it with the rest of the system as 
seen in Fig. 1. However, for creating certain use-cases and 
scenarios, CARLA is much more efficient, and it is mainly 
developed for autonomous vehicle, unlike Gazebo. 

Therefore, CARLA is chosen as a primary simulator for 
input data and command execution. 

III.PLATFORMS AND TOOLS 

In order to fulfil the goal of using applications in SIL 
environment, fast prototyping tools are needed, an 
autonomous platform to build upon and a simulation tool. 
ROS is used for prototyping, which is the reason for initial 
use of Gazebo. ROS represents a software stack with a set 
of tools that can be used for robot control and analysis and 
for that used to put together various robotics solutions.  It 
uses a concept of nodes (processes) that communicate 
between themselves using topics and services. This is 
orchestrated by one main node called Master. ROS also 
offers multilingual bindings making it easy to integrate with 
any existing code base. For these reasons many researchers 
and even companies use ROS as a base for autonomous 
agents. This is also the case with Autoware platform which 
provides functional components required to accomplish 
autonomous driving. Platform architecture and the set of 
algorithms in Autoware are well suited for urban driving 
scenarios. Also, for processing purposes the platform 
utilizes GPU optimized frameworks and libraries like 
OpenGL, CUDA, OpenCL, PCL etc.  

A large code base, user community haven’t been 
neglected by CARLA developers, so they used ROS Bridge 
[18] component for CARLA simulator integration. As the 
simulator itself is based on Unreal Engine 4 [19] and Python 
API there was a need to transform data into ROS format of 
messages for self-driving software to run on CARLA as it 
is, without modifications. This provided a ground to 
connect CARLA with Autoware, which is done with the 
“Autoware in Carla” [20] integration stack that relies on 
existing bridge.  

The Autoware-bridge contains three Carla clients:  
1. ROS Bridge - Monitors existing actors in Carla, 

publishes changes on ROS Topics (e.g. new 
sensor data) - Data publishing. 

2. Ego vehicle - Instantiation of the ego vehicle 
with its sensor setup – Ego Vehicle Setup. 

3. Waypoint calculation - Uses the Carla Python 
API to calculate a route – Route planning. 

With these CARLA clients, overall architecture is 
presented in Fig. 2. For visualization of actions and 
information RViz tool from the ROS environment is used. 

 

 
Fig. 1. Gazebo simulator on top of Autoware. 
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Fig. 2. Architecture of CARLA and Autoware integration. 

IV.SYSTEM INTEGRATION 

In this section, the development of demo applications and 
their integration with Autoware have been provided. 
Furthermore, sensor configuration for ego vehicle in 
CARLA simulator and configuration of start-up scripts that 
create virtual environment alongside a virtual vehicle is 
described. Some of the parameters given are weather 
conditions, number of vehicles and pedestrians, selection of 
maps with waypoints, etc. 

A. Demo ADAS applications 

The first part of the integration was to implement three 
demo ADAS applications that could be used in simulation 
testing. One application was based on the implementation 
of occupancy grid framework [21] which is mostly used for 
mapping use-cases. The second one is the implementation 
of stopping distance monitor functionality which can be 
used in system like Forward Collision Warning (FCW). The 
third application handles vision-based detection of lane 
lines, calculation of their curvature and vehicle offset within 
a road lane in order to provide data for functions of lane 
keeping, Lane Change Warning (LCW) and Lane Change 
Assistant (LCA). 

The first two applications were designed to be used with 
LiDAR data, more precisely point cloud input streams, 
while the third one uses front placed RGB camera with 
1200x720 resolution. Autoware as a platform for an 
autonomous driving already has nodes that can publish 
point cloud data and raw image frames on defined topics. 
Because of this, applications were implemented as ROS 
packages within the Autoware platform. 

1) Occupancy grid prototype 

The pipeline for this application can be seen in Fig. 3. 
Based on input data, a parameterized occupancy grid is 
created. The grid is parameterized by size, topic for point 
cloud data, and size of every cell with ego vehicle in the 
centre of the grid. After the data is received, transformation 
is done from LiDAR coordinate system to a vehicle 
perspective. Ego vehicle usually has a fixed frame for the 
centre of its own coordinate system that is used to align all 
algorithms, sensors and maps. This is also given as a 
parameter for package and rear axis is used in this 
demonstration. Next is filtering of Region of Interest (RoI) 
based on a given size to reduce the cost of updating cells. 
Parallel with this, ground points are being filtered, which is 
done to remove false detections and to provide a list of these 
points that could be used in detection of free space. The 
update of the cells is the end of cycle processing which is 
done according to log-odds notation. As all these operations 

on point cloud are expensive, therefore, C++ is used for 
performance reasons and many supporting libraries. For 
example, cloud processing and filtering is done with PCL 
library. 

 
Fig. 3. Occupancy grid package processing. 

2) Stopping distance monitor 

Implementation of the second application, the stopping 
distance monitor, required additional velocity of the 
vehicle. This is needed in order to calculate if the ego 
vehicle could stop before it hits the vehicle in front. In this 
example LiDAR data is used to determine distance between 
the vehicles. To acquire this data, the application must 
subscribe to topics that are advertised by corresponding 
nodes. Because of this, the application implements a 
communication adapter that handles communication with 
ROS stack. Using this design, computational logic can be 
independent of ROS and can be used in other future stacks. 
A communication module forwards data to the 
computational module. Point cloud data is clustered into 
groups and by determining the nearest detected cluster, 
which is in the vehicle path, distance between two vehicles 
is determined. This information, together with the current 
speed and maximum deceleration model can generate a 
warning if a vehicle would not be able to stop on time. This 
is done by a generation module which forwards the warning 
to the communication module that is also implemented to 
publish back into the ROS environment. For this a C++ 
client ROS API and library is utilized. This information can 
be used by different features to execute automatic braking 
or notify the driver. Design of the application can be seen 
in Fig. 4. 

 
Fig. 4. Stopping distance monitor application design. 

3) Lane and curvature detection 

A lane detection application [22] is written in Python 
unlike previous two. This is done by utilizing the multi-
language bind libraries from ROS. Application subscribes 
to image_raw topic where generated image data is 
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published. On image receive callback, a lane detection 
pipeline is triggered which can be seen in Fig. 5. 

Images obtained in real world scenarios are distorted due 
to camera lenses. In order to have precise detection images 
must be undistorted. In the simulation environment, since 
the image is rendered, there is no distortion, so this pipeline 
block is added for a real-world test but it is visualized here 
for the complete picture. 

 
Fig. 5. Lane detection pipeline. 

Next, to extract lane lines pixels, combined techniques of 
gradient and colour space (Hue, Saturation, Lightness - 
HSL) thresholding are used. However, this also leaves other 
parts of the image with high gradients. Again, by selecting 
four polygon points that include lane lines, RoI filtering is 
applied and transforms only that part of the image into 
birds-view perspective (Fig. 6). 

 This approach enabled us to use histograms to detected 
peaks in pixels along x axis, and with that, the start of the 
lane lines. The first of the 9 bounding rectangles, is placed 
at the centre of the peak for both lanes. Rest of the bounding 
rectangles are placed one on the other following the line, 
and with this, also detecting curved lines. This can be seen 
in Fig. 6. 

 
Fig. 6. Bird-view perspective and fitpoly() on pixels within 

bounding boxes. 

 After the lane pixels have been identified, polyfit() 
function is called to find line coefficients. These 
coefficients are published on /lane_lines topic and 
consumed by curvature and offset calculation node. 

 Optimisation is performed with a low pass filter on lanes 
to avoid sudden jumps due to noise or bad thresholding for 
a given frame. Another optimisation method is applying a 
targeted search around detected lines once it is found, to 
save processing time. 

 The last step is to calculate lane curvature and vehicle 
offset from a lane centre so that correct lateral control 
commands are executed to keep a vehicle in lane. 

In the first stage of development, pre-recorded rosbag 
files have been used from real autonomous test drives. With 
this approach only recorded data is obtained and tests were 

run for visible markers in RViz visualization tool. The 
problem with this approach is that it does not provide a 
closed feedback loop, because it can’t execute actions based 
on given commands. For this reason, CARLA simulator has 
been introduced. 

B. Sensors  

The goal of integration with Carla is to get data from the 
simulator to the Autoware. This is done by utilizing a 
previously described setup with ROS Bridge for Carla 
messages and connection with Autoware. In order to send 
the simulated data the first step is to create it with sensors 
from Carla database. As both applications needed point 
cloud data, lidar.ray_cast sensor is instantiated on top of the 
vehicle. In addition to this camera.rgb sensor is added to 
visualize the scene in RViz and provide raw frames for lane 
detection nodes. Besides these that are directly important 
for the application, other sensors, like GNSS, for example, 
are instantiated, and a HD map is provided. Autoware nodes 
responsible for localization utilize this type of sensors. All 
sensors are described in JSON file that is consumed by 
simulator. 

C. Scene configuration 

Final step needed to run the whole SIL setup, was to 
create virtual scenes. Carla already offers Python API to 
create diverse scenes with existing maps which were 
utilized to get an optimal setup for autonomous driving use-
cases. Tests were run against sunny and rainy weather 
conditions, where algorithms, as expected, worked better in 
sunny conditions due to disruption of LiDAR beams with 
rain drops and reflections from a wet road that caused 
problems when thresholding the image. 

Simplified integration of these applications can be seen 
in Fig. 7. Perception applications (ROS nodes) subscribe to 
required topics described for each application separately. 
Based on their algorithms they publish information which 
is consumed by “Waypoint Updater”. This node subscribes 
to waypoints published by CARLA itself. Fusion of these 
waypoints and information from perception application 
produces a set of final waypoints. 

 
Fig. 7. Architecture of autonomous control system. 

Information from a stopping distance monitoring node 
that contains coordinates of obstacle in front and impact 
severity, has a longitudinal effect in the generation of final 
set of waypoints. It determines how many waypoints are 
generated in distance, so if an obstacle is close and a 
possibility of impact is high then waypoints will not be 
generated. 

Lane points acquired from “Lane Detection” node affect 
the position of the waypoint between two lanes and with 
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that helps keep a vehicle in the center of the lane. For this 
there are other topics like “/vehicle_offset” and 
“/(lane)radius” as seen in Fig. 5.  

Coordinates from side obstacles generated with 
“Occupancy Grid Updater” influence the generation of 
waypoints at turns. 

V.VALIDATION 

Once the custom scene was created, all the nodes and 
bridges started along with the vehicle model loaded in the 
environment with instantiated sensors. Manual system tests 
were controlled with RViz by setting a destination point 
towards which ego-vehicle moved by existing waypoints on 
the map. 

As depicted in Fig. 8, the vehicle model and the custom 
scene were created with Non-Player Characters (NPC) – 
vehicles. These vehicles are spawned deliberately in front 
of the ego vehicle to test if the vehicle will stop. Vehicle 
was aware of obstacles in front which is visualized with the 
red part of the rectangle and has generated the warning 
signals and executed stoppage of the manoeuvre. Similar 

use cases were created for a mapping application where as 
many objects as possible are spawned to test the application 
with different cell size and size of the affected frame 

The RGB camera images (bottom left), joint motions and 
the LiDAR scans that were generated from Carla were 
visualized in RViz.  

In Fig. 9 visualization of “/image_stacked” topic that is 
generated after finding lane lines, from the third application 
is seen. Image is overlayed with green space between two 
correctly detected lanes with curvature and vehicle offset. 

As already mentioned, the following algorithm is tested 
in a real urban street scenario by placing the dash camera in 
front of the real car. Fig. 10 presents one frame from real 
time detection where lines are drawn on top of lanes in 
original frame. 

Except for empirical confirmation of correctness, other 
formal methods were used during the testing. Applications 
were written by Test Driven Development methodology. 
This ensured testing on both unit and functional 
(acceptance) level of testing. 

 
Fig. 8. Visualization of FCW application integrated with CARLA simulator. 

 
Fig. 9. Visualization of Lane detection integrated with CARLA simulator. 
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Fig. 10. Lane detection (pink) in real world. 

The most important tests were executed at acceptance 
level where output commands from the system treated as 
block-box are evaluated. Predefined environment stimulus 
with expected results is defined. This includes a saved 
segment of the route with known waypoints, obstacle 
coordinates, lane waypoints and acceptable vehicle states. 

The autonomous control system architecture under test, 
starts by loading mapped route base waypoints with 
“Waypoint Loader" and publishing them. The system then 
starts receiving the car's sensor data and computes the final 
set of waypoints as previously described. Since the 
scenarios are known and the expected set of waypoints is 
known it is easily determined if tests are passing 
successfully. Valid expected results also include small 
deviations in the position of generated waypoints. These 
deviations are allowed if generated waypoints will keep a 
vehicle in the lane with slight offsets and are determined 
based on that. 

Tests on this level confirm functionality of the integrated 
system and offer formal verification of implemented 
solution. 

VI.CONCLUSION 

The key benefit of using a driving simulator in the 
development of autonomous vehicles is to explore the 
subjective, as well as the objective, effects of autonomous 
platform inputs under a range of conditions and 
circumstances with a lowest cost. Creating these virtual 
environments using different obstacles, road models, 
unexpected events etc. enables OEMs to remove the need 
for expensive prototypes during the development phase. 
Ultimately this will accelerate the time to market for fully 
autonomous vehicles and offer safer and futuristic 
transportation. 

This paper emphasized the importance and benefits of 
early software testing and presented a practical example of 
simple SIL setup. A setup consisting of Autoware and Carla 
allowed us to have a complete feedback loop for application 
and future research testing and better understand the whole 

development process. Future work will include research on 
other simulators and platforms to gain wider understanding 
of real-world needs presented in the automotive industry 
and autonomous driving problem domain. 
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