
40 Telfor Journal, Vol. 12, No. 1, 2020.

Abstract — Higher levels of autonomous driving are

bringing sophisticated requirements and unpredicted
challenges. In order to solve these problems, the set of
functionalities in modern vehicles is growing in terms of
algorithmic complexity and required hardware. The risk of
testing implemented solutions in real world is high, expensive
and time consuming. This is the reason for virtual automotive
simulation tools for testing are heavily acclaimed. Original
Equipment Manufacturers (OEMs) use these tools to create
closed sense, compute, act loop to have realistic testing
scenarios. Production software is tested against simulated
sensing data. Based on these inputs a set of actions is produced
and simulated which generates consequences that are
evaluated. This creates a possibility for OEMs to minimize
design errors and optimize costs of the vehicle production
before any physical prototypes are produced. This paper
presents the development of simple C++/Python perception
applications that can be used in driver assistance
functionalities. Using ROS as a prototyping platform these
applications are validated and tested with “Software-In-the-
Loop” (SIL) method. CARLA simulator is used as a generator
for input data and output commands of the autonomous
platform are executed as simulated actions within simulator.
Validation is done by connecting Autoware autonomous
platform with CARLA simulator in order to test against
various scenes in which applications are applicable. Vision
based lane detection, which is one of the prototypes, is also
tested in a real world scenario to demonstrate the applicability
of algorithms developed with simulators to real-time
processing.

Keywords — Autonomous driving, perception, ROS,
CARLA, AUTOWARE, SIL, ADAS, C++, Python.

I.INTRODUCTION

EVELOPMENT of autonomous vehicles is a major trend
in automotive industry. Pushing towards Society of

Automotive Engineers (SAE) levels [1] four and five and
fully automated vehicle as an ultimate product, engineers
are facing issues that have never been addressed. As they
progress with the development of some functionality new
problems arise because of uncertainty of physical world, as
there are many unpredicted situations that could cause
accidents. Due to this, the development of virtual simulators
to test vehicle’s cognitive computing [2] becomes a crucial
part of the development. With this approach the perception
module [3] receives input from computer-generated scenes
and mathematically modelled movement patterns for
pedestrians, bicycles, and other entities. An acting module
[3] on the other side outputs commands to simulators that
implement these as actions. Using this, billions of
kilometres that are required [4] to demonstrate the
reliability of autonomous vehicles in terms of fatalities and
injuries, have been already simulated by OEMs [5]. By
using simulator’s abstract visualizations, engineers can
focus on the development of core capabilities for
autonomous driving, such as: driving models and systems,
remote assistance, mapping, localization, perception, etc.

This paper emphasizes and explains the importance of
using simulators in the modern automotive development
and gives a practical example by showing how simple
Advanced Driver Assistance Systems (ADAS) applications
can be tested within the context. The rest of the material is
organized as follows. The first part explains current state of
the industry, problems and practices used. Also, it provides
some academic and industry related as a background. The
third section explains platforms and tools that are used for
development and simulations. Section IV describes the
purpose of test applications and presents an existing setup
for connecting Autoware [6] with CARLA and describes
sensor and start up file configuration. Section V presents
validation for these use-cases in simulators and real world,
and final section concludes the paper with the review of
work done and some future steps.

II.SIMULATORS

 Simulators use different models of environments that can
be built from high resolution LiDARs, cameras or even
virtual maps that provide annotations with tools like
OpenDRIVE [7]. Furthermore, some types of simulators
can augment existing data like point cloud to create

Stevan Stević, Momčilo Krunić, Marko Dragojević, and Nives Kaprocki, Members, IEEE

Development of ADAS perception applications
in ROS and “Software-In-the-Loop” validation

with CARLA simulator

D

Paper received May 01, 2020; revised July 17; accepted July 18,
2020. Date of publication July 31, 2020. The associate editor
coordinating the review of this manuscript and approving it for
publication was Prof. Miroslav Lutovac.

This paper is revised and expanded version of the paper presented

at the 27th Telecommunications Forum TELFOR 2019 [23].

This work was partially supported by the Ministry of Education,

Science and Technological Development of Republic of Serbia under
Grant III_044009_1.

Stevan Stević is with the RT-RK Institute for Computer Based

Systems, Novi Sad, Serbia (e-mail: stevan.stevic@rt-rk.com).
Momčilo Krunić is with the Faculty of Technical Sciences,

University of Novi Sad, Serbia, Novi Sad, Serbia (e-mail:
momcilo.krunic@rt-rk.com).

Marko Dragojević is with the RT-RK Institute for Computer Based
Systems, Novi Sad, Serbia (e-mail: marko.dragojevic@rt-rk.com).

Nives Kaprocki is with the RT-RK Institute for Computer Based
Systems, Novi Sad and Faculty of Technical Sciences, University of
Novi Sad, Serbia (e-mail: @rt-rk.com).

Stević et al.: Development of ADAS perception applications in ROS 41

obstacles [8]. Based on this, modern day simulators like
rFpro [9], LGSVL [10], AVS [11] by Uber, CARLA [12],
DRIVE CONSTELLATION Simulator [13] by NVIDIA,
Gazebo [14] and others are able to create very realistic
scenes and complex layouts like road paint or road
separation that can be difficult to discern even for humans.
On top of that, these ecosystems are scalable and can
implement different feature requests, unlike early
development tools of this type that stretch their capabilities
to satisfy different use-cases.

Simulators usually offer simulation of a wide variety of
virtual sensors that can be placed on the ego vehicle to
recreate real test vehicles. These sensors can provide a
stream of different formats of data like LiDAR point clouds
[15], RGB, HDR, depth in meters or material properties of
objects and others. The data is produced based on a current
scene in the simulator and virtual placement of the sensors.

The problem with using synthesized and generated data
comes from the stochastic nature of the real world by which
it avoids patterns found in these types of data and can
notably impair the performance of trained neural networks
or prediction models. Simulators tend to overcome these
problems by allowing stochastic behaviours to be injected
with disruptive, low likelihood-of-occurrence events. This
is utilized for example, by creating unpredictable
behaviours for drivers, on some random number of driven
kilometres.

The ability to have a simulation that correlates closely
with physical world, with different scenes, traffic flow and
virtual sensors, provides engineers environment to create
SIL [16] systems. This means that every entity like
hardware, data, use-cases and such are simulated, whilst
using production software to test against it. By testing some
features earlier in the design cycle, that would otherwise
require finished prototypes, changes are less expansive to
implement, and problems are eliminated or predicted on
time. Except these advantages, SIL testing also provides a
level of certainty, because engineers can be sure that given
behaviour is not due to any mechanical or electrical
malfunctions but caused by a written software.

 It is hard to say which simulators are “state-of-the-art”
products, because these metrics can only be defined in the
scope of requirements that are being tested. Raging from
simulators for algorithm testing to sensor technology
readiness level (TRL). However, latest simulators are being
designed to work with a client-server architecture which is
also the case with Gazebo and CARLA simulator. This
approach generated a new set of scenarios where multiple
ego vehicles can be used in the same scenes. Furthermore,
an even bigger advantage is that a simulator can be cloud-
based, simplifying configurations, organizations and even
providing opportunities for research to departments that are
lacking the technical or finical resources.

First, Gazebo is used, which is one of the most used
simulators when working with Robot Operating System
(ROS) [17] and connected it with the rest of the system as
seen in Fig. 1. However, for creating certain use-cases and
scenarios, CARLA is much more efficient, and it is mainly
developed for autonomous vehicle, unlike Gazebo.

Therefore, CARLA is chosen as a primary simulator for
input data and command execution.

III.PLATFORMS AND TOOLS

In order to fulfil the goal of using applications in SIL
environment, fast prototyping tools are needed, an
autonomous platform to build upon and a simulation tool.
ROS is used for prototyping, which is the reason for initial
use of Gazebo. ROS represents a software stack with a set
of tools that can be used for robot control and analysis and
for that used to put together various robotics solutions. It
uses a concept of nodes (processes) that communicate
between themselves using topics and services. This is
orchestrated by one main node called Master. ROS also
offers multilingual bindings making it easy to integrate with
any existing code base. For these reasons many researchers
and even companies use ROS as a base for autonomous
agents. This is also the case with Autoware platform which
provides functional components required to accomplish
autonomous driving. Platform architecture and the set of
algorithms in Autoware are well suited for urban driving
scenarios. Also, for processing purposes the platform
utilizes GPU optimized frameworks and libraries like
OpenGL, CUDA, OpenCL, PCL etc.

A large code base, user community haven’t been
neglected by CARLA developers, so they used ROS Bridge
[18] component for CARLA simulator integration. As the
simulator itself is based on Unreal Engine 4 [19] and Python
API there was a need to transform data into ROS format of
messages for self-driving software to run on CARLA as it
is, without modifications. This provided a ground to
connect CARLA with Autoware, which is done with the
“Autoware in Carla” [20] integration stack that relies on
existing bridge.

The Autoware-bridge contains three Carla clients:
1. ROS Bridge - Monitors existing actors in Carla,

publishes changes on ROS Topics (e.g. new
sensor data) - Data publishing.

2. Ego vehicle - Instantiation of the ego vehicle
with its sensor setup – Ego Vehicle Setup.

3. Waypoint calculation - Uses the Carla Python
API to calculate a route – Route planning.

With these CARLA clients, overall architecture is
presented in Fig. 2. For visualization of actions and
information RViz tool from the ROS environment is used.

Fig. 1. Gazebo simulator on top of Autoware.

42 Telfor Journal, Vol. 12, No. 1, 2020.

Fig. 2. Architecture of CARLA and Autoware integration.

IV.SYSTEM INTEGRATION

In this section, the development of demo applications and
their integration with Autoware have been provided.
Furthermore, sensor configuration for ego vehicle in
CARLA simulator and configuration of start-up scripts that
create virtual environment alongside a virtual vehicle is
described. Some of the parameters given are weather
conditions, number of vehicles and pedestrians, selection of
maps with waypoints, etc.

A. Demo ADAS applications

The first part of the integration was to implement three
demo ADAS applications that could be used in simulation
testing. One application was based on the implementation
of occupancy grid framework [21] which is mostly used for
mapping use-cases. The second one is the implementation
of stopping distance monitor functionality which can be
used in system like Forward Collision Warning (FCW). The
third application handles vision-based detection of lane
lines, calculation of their curvature and vehicle offset within
a road lane in order to provide data for functions of lane
keeping, Lane Change Warning (LCW) and Lane Change
Assistant (LCA).

The first two applications were designed to be used with
LiDAR data, more precisely point cloud input streams,
while the third one uses front placed RGB camera with
1200x720 resolution. Autoware as a platform for an
autonomous driving already has nodes that can publish
point cloud data and raw image frames on defined topics.
Because of this, applications were implemented as ROS
packages within the Autoware platform.

1) Occupancy grid prototype

The pipeline for this application can be seen in Fig. 3.
Based on input data, a parameterized occupancy grid is
created. The grid is parameterized by size, topic for point
cloud data, and size of every cell with ego vehicle in the
centre of the grid. After the data is received, transformation
is done from LiDAR coordinate system to a vehicle
perspective. Ego vehicle usually has a fixed frame for the
centre of its own coordinate system that is used to align all
algorithms, sensors and maps. This is also given as a
parameter for package and rear axis is used in this
demonstration. Next is filtering of Region of Interest (RoI)
based on a given size to reduce the cost of updating cells.
Parallel with this, ground points are being filtered, which is
done to remove false detections and to provide a list of these
points that could be used in detection of free space. The
update of the cells is the end of cycle processing which is
done according to log-odds notation. As all these operations

on point cloud are expensive, therefore, C++ is used for
performance reasons and many supporting libraries. For
example, cloud processing and filtering is done with PCL
library.

Fig. 3. Occupancy grid package processing.

2) Stopping distance monitor

Implementation of the second application, the stopping
distance monitor, required additional velocity of the
vehicle. This is needed in order to calculate if the ego
vehicle could stop before it hits the vehicle in front. In this
example LiDAR data is used to determine distance between
the vehicles. To acquire this data, the application must
subscribe to topics that are advertised by corresponding
nodes. Because of this, the application implements a
communication adapter that handles communication with
ROS stack. Using this design, computational logic can be
independent of ROS and can be used in other future stacks.
A communication module forwards data to the
computational module. Point cloud data is clustered into
groups and by determining the nearest detected cluster,
which is in the vehicle path, distance between two vehicles
is determined. This information, together with the current
speed and maximum deceleration model can generate a
warning if a vehicle would not be able to stop on time. This
is done by a generation module which forwards the warning
to the communication module that is also implemented to
publish back into the ROS environment. For this a C++
client ROS API and library is utilized. This information can
be used by different features to execute automatic braking
or notify the driver. Design of the application can be seen
in Fig. 4.

Fig. 4. Stopping distance monitor application design.

3) Lane and curvature detection

A lane detection application [22] is written in Python
unlike previous two. This is done by utilizing the multi-
language bind libraries from ROS. Application subscribes
to image_raw topic where generated image data is

Stević et al.: Development of ADAS perception applications in ROS 43

published. On image receive callback, a lane detection
pipeline is triggered which can be seen in Fig. 5.

Images obtained in real world scenarios are distorted due
to camera lenses. In order to have precise detection images
must be undistorted. In the simulation environment, since
the image is rendered, there is no distortion, so this pipeline
block is added for a real-world test but it is visualized here
for the complete picture.

Fig. 5. Lane detection pipeline.

Next, to extract lane lines pixels, combined techniques of
gradient and colour space (Hue, Saturation, Lightness -
HSL) thresholding are used. However, this also leaves other
parts of the image with high gradients. Again, by selecting
four polygon points that include lane lines, RoI filtering is
applied and transforms only that part of the image into
birds-view perspective (Fig. 6).

 This approach enabled us to use histograms to detected
peaks in pixels along x axis, and with that, the start of the
lane lines. The first of the 9 bounding rectangles, is placed
at the centre of the peak for both lanes. Rest of the bounding
rectangles are placed one on the other following the line,
and with this, also detecting curved lines. This can be seen
in Fig. 6.

Fig. 6. Bird-view perspective and fitpoly() on pixels within

bounding boxes.

 After the lane pixels have been identified, polyfit()
function is called to find line coefficients. These
coefficients are published on /lane_lines topic and
consumed by curvature and offset calculation node.

 Optimisation is performed with a low pass filter on lanes
to avoid sudden jumps due to noise or bad thresholding for
a given frame. Another optimisation method is applying a
targeted search around detected lines once it is found, to
save processing time.

 The last step is to calculate lane curvature and vehicle
offset from a lane centre so that correct lateral control
commands are executed to keep a vehicle in lane.

In the first stage of development, pre-recorded rosbag
files have been used from real autonomous test drives. With
this approach only recorded data is obtained and tests were

run for visible markers in RViz visualization tool. The
problem with this approach is that it does not provide a
closed feedback loop, because it can’t execute actions based
on given commands. For this reason, CARLA simulator has
been introduced.

B. Sensors

The goal of integration with Carla is to get data from the
simulator to the Autoware. This is done by utilizing a
previously described setup with ROS Bridge for Carla
messages and connection with Autoware. In order to send
the simulated data the first step is to create it with sensors
from Carla database. As both applications needed point
cloud data, lidar.ray_cast sensor is instantiated on top of the
vehicle. In addition to this camera.rgb sensor is added to
visualize the scene in RViz and provide raw frames for lane
detection nodes. Besides these that are directly important
for the application, other sensors, like GNSS, for example,
are instantiated, and a HD map is provided. Autoware nodes
responsible for localization utilize this type of sensors. All
sensors are described in JSON file that is consumed by
simulator.

C. Scene configuration

Final step needed to run the whole SIL setup, was to
create virtual scenes. Carla already offers Python API to
create diverse scenes with existing maps which were
utilized to get an optimal setup for autonomous driving use-
cases. Tests were run against sunny and rainy weather
conditions, where algorithms, as expected, worked better in
sunny conditions due to disruption of LiDAR beams with
rain drops and reflections from a wet road that caused
problems when thresholding the image.

Simplified integration of these applications can be seen
in Fig. 7. Perception applications (ROS nodes) subscribe to
required topics described for each application separately.
Based on their algorithms they publish information which
is consumed by “Waypoint Updater”. This node subscribes
to waypoints published by CARLA itself. Fusion of these
waypoints and information from perception application
produces a set of final waypoints.

Fig. 7. Architecture of autonomous control system.

Information from a stopping distance monitoring node
that contains coordinates of obstacle in front and impact
severity, has a longitudinal effect in the generation of final
set of waypoints. It determines how many waypoints are
generated in distance, so if an obstacle is close and a
possibility of impact is high then waypoints will not be
generated.

Lane points acquired from “Lane Detection” node affect
the position of the waypoint between two lanes and with

44 Telfor Journal, Vol. 12, No. 1, 2020.

that helps keep a vehicle in the center of the lane. For this
there are other topics like “/vehicle_offset” and
“/(lane)radius” as seen in Fig. 5.

Coordinates from side obstacles generated with
“Occupancy Grid Updater” influence the generation of
waypoints at turns.

V.VALIDATION

Once the custom scene was created, all the nodes and
bridges started along with the vehicle model loaded in the
environment with instantiated sensors. Manual system tests
were controlled with RViz by setting a destination point
towards which ego-vehicle moved by existing waypoints on
the map.

As depicted in Fig. 8, the vehicle model and the custom
scene were created with Non-Player Characters (NPC) –
vehicles. These vehicles are spawned deliberately in front
of the ego vehicle to test if the vehicle will stop. Vehicle
was aware of obstacles in front which is visualized with the
red part of the rectangle and has generated the warning
signals and executed stoppage of the manoeuvre. Similar

use cases were created for a mapping application where as
many objects as possible are spawned to test the application
with different cell size and size of the affected frame

The RGB camera images (bottom left), joint motions and
the LiDAR scans that were generated from Carla were
visualized in RViz.

In Fig. 9 visualization of “/image_stacked” topic that is
generated after finding lane lines, from the third application
is seen. Image is overlayed with green space between two
correctly detected lanes with curvature and vehicle offset.

As already mentioned, the following algorithm is tested
in a real urban street scenario by placing the dash camera in
front of the real car. Fig. 10 presents one frame from real
time detection where lines are drawn on top of lanes in
original frame.

Except for empirical confirmation of correctness, other
formal methods were used during the testing. Applications
were written by Test Driven Development methodology.
This ensured testing on both unit and functional
(acceptance) level of testing.

Fig. 8. Visualization of FCW application integrated with CARLA simulator.

Fig. 9. Visualization of Lane detection integrated with CARLA simulator.

Stević et al.: Development of ADAS perception applications in ROS 45

Fig. 10. Lane detection (pink) in real world.

The most important tests were executed at acceptance
level where output commands from the system treated as
block-box are evaluated. Predefined environment stimulus
with expected results is defined. This includes a saved
segment of the route with known waypoints, obstacle
coordinates, lane waypoints and acceptable vehicle states.

The autonomous control system architecture under test,
starts by loading mapped route base waypoints with
“Waypoint Loader" and publishing them. The system then
starts receiving the car's sensor data and computes the final
set of waypoints as previously described. Since the
scenarios are known and the expected set of waypoints is
known it is easily determined if tests are passing
successfully. Valid expected results also include small
deviations in the position of generated waypoints. These
deviations are allowed if generated waypoints will keep a
vehicle in the lane with slight offsets and are determined
based on that.

Tests on this level confirm functionality of the integrated
system and offer formal verification of implemented
solution.

VI.CONCLUSION

The key benefit of using a driving simulator in the
development of autonomous vehicles is to explore the
subjective, as well as the objective, effects of autonomous
platform inputs under a range of conditions and
circumstances with a lowest cost. Creating these virtual
environments using different obstacles, road models,
unexpected events etc. enables OEMs to remove the need
for expensive prototypes during the development phase.
Ultimately this will accelerate the time to market for fully
autonomous vehicles and offer safer and futuristic
transportation.

This paper emphasized the importance and benefits of
early software testing and presented a practical example of
simple SIL setup. A setup consisting of Autoware and Carla
allowed us to have a complete feedback loop for application
and future research testing and better understand the whole

development process. Future work will include research on
other simulators and platforms to gain wider understanding
of real-world needs presented in the automotive industry
and autonomous driving problem domain.

REFERENCES
[1] “SAE levels of driving automation”,

https://www.sae.org/news/2019/01/sae-updates-j3016-automated-
driving-graphic [Accessed: September 2019].

[2] S. Behere and M. Torngren, „A functional architecture for
autonomous driving”, 2015 First International Workshop on
Automotive Software Architecture (WASA), Montreal, QC, 2015,
pp. 3-10.

[3] Matthaei, Richard & Maurer, Markus, „Autonomous driving – A top-
down-approach“, Automatisierungstechnik, 63, 2015.

[4] Kalra, Nidhi and Susan M. Paddock, Driving to Safety: How Many
Miles of Driving Would It Take to Demonstrate Autonomous
Vehicle Reliability? Santa Monica, CA: RAND Corporation, 2016.

[5] “Waymo simulated kilometres”,
https://techcrunch.com/2019/07/10/waymo-has-now-driven-10-
billion-autonomous-miles-in-simulation/ [Accessed: September
2019].

[6] “Autoware.io”, https://github.com/Autoware-AI/autoware.ai
[Accessed: July 2002].

[7] “OpenDRIVE”, http://www.opendrive.org/ [Accessed: September
2019].

[8] Fang, J., Zhou, D., Yan, F., Zhao, T., Zhang, F., Ma, Y., Wang, L.,
& Yang, R. (2018). Augmented LiDAR Simulator for Autonomous
Driving.

[9] “rFpro”, http://www.rfpro.com/ [Accessed: September 2019].
[10] “LGSVL Simulator”, https://www.lgsvlsimulator.com/ [Accessed:

September 2019].
[11] “AVS”, https://avs.auto/ [Accessed: September 2019].
[12] Dosovitskiy, A., Ros, G., Codevilla, F., López, A., & Koltun, V.

(2017). CARLA: An Open Urban Driving Simulator. CoRL.
[13] “NVIDIA DRIVE CONSTELLATION”,

https://www.nvidia.com/en-gb/self-driving-cars/drive-constellation/
[Accessed: September 2019].

[14] “Gazebo simulator”, http://gazebosim.org/ [Accessed: April 2020].
[15] Fang, Jin & Yan, Feilong & Zhao, Tongtong & Zhang, Feihu &

Zhou, Dingfu & Yang, Ruigang & Ma, Yu & Wang, Liang. (2018).
Simulating LIDAR Point Cloud for Autonomous Driving using Real-
world Scenes and Traffic Flows.

[16] Sooyong Jeong, Yongsub Kwak and Woo Jin Lee, “Software-in-the-
Loop simulation for early-stage testing of AUTOSAR software
component,” 2016 Eighth International Conference on Ubiquitous
and Future Networks (ICUFN), Vienna, 2016, pp. 59-63.

[17] “Robot Operating System”, https://www.ros.org/ [Accessed:
September 2019].

[18] “ROS bridge for CARLA simulator”, https://github.com/carla-
simulator/ros-bridge [Accessed: September 2019].

[19] “Unreal Engine 4”, https://docs.unrealengine.com/en-US/index.html
[Accessed: September 2019].

[20] “Autoware in Carla”, https://github.com/carla-simulator/carla-
autoware [Accessed: September 2019].

[21] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” in Computer, vol. 22, no. 6, pp. 46-57, June 1989.

[22] „Lane finding project“, https://github.com/stevanStevic/Advanced-
Lane-Lines-Finding [Accessed: April 2020].

[23] S. Stević, M. Krunić, M. Dragojević and N. Kaprocki, "Development
and Validation of ADAS Perception Application in ROS
Environment Integrated with CARLA Simulator," 2019 27th
Telecommunications Forum (TELFOR), Belgrade, Serbia, 2019,

pp. 1-4.

