
80 Telfor Journal, Vol. 12, No. 2, 2020.

Abstract — The emergence of Mirai botnet in 2016 took

worldwide research teams by surprise, proving that a large
number of low-performance IoT devices could be hacked and
used for illegal purposes, causing extremely voluminous DDoS
attacks. Therefore, a thorough inspection of the current state
of IoT botnets is essential. In this paper, we analyze the
dynamic behavior and command and control channels of two
classes of IoT botnets, Mirai and Gafgyt. Based on collected
information, a comparative analysis and key phases of botnet
communication is provided. Such an analysis will serve as a
basis for smart botnet detection mechanisms.
Keywords — Botnets, CnC communication, IoT.

I. INTRODUCTION

OTNETS represent a network of computers (bots) which
are under the control of a malicious hacker - botmaster.

Botmasters use the machines under their control for various
types of malicious activities, such as: performing DDoS
(Distributed Denial of Service) attacks, spreading
ransomware, stealing personal information, unwanted
digital currency mining, etc. [1] A botmaster communicates
with infected computers via the Command and Control
(CnC or C2) channel. By exploring command and control
dynamic behavior patterns and creating a system that can
efficiently discover botnet communication, it is possible to
stop the bots in the earlier stages of the attack lifecycle. This
is to prevent them from becoming activated by the
botmaster and involved in the attack, and also to mitigate
threats to the information security. Preventing botnet
creation in a target network will not stop the attacks from
another network against the target. However, widespread
use of similar systems would increase the overall
information security of the devices connected to the
internet. The CnC channel is a single point of failure for the
botnet and its detection, and mitigation would fully disable
the control of the bots. CnC channels evolved in time, as
well as their detection avoidance techniques, which became
more and more sophisticated. Examples being: DNS
(Domain Name Server) fluxing and DGA (Domain
Generation Algorithm), mentioned in the next Section.

The Mirai botnet appeared in 2016. Its power was
demonstrated by performing DDoS attacks against famous
sites, such as Krebs on Security and OVH, as well as DNS
providers Dyn and Lonestar Cell [2]. Infected devices
included IP cameras and home routers, and their number
surpassed 200.000. Since the IoT (Internet of Things)
devices oft-times do not possess even the basic security
features, they represent a weak spot for any computer
network. This is the primary reason why researching IoT
botnets, as well as their CnC communication, is paramount.

Although the peak of the first Mirai infection was in
2016, the malware which is based on the Mirai code still
exists and is very active in building new botnet
infrastructures. Recently, new botnets have appeared, built
using a variant of Mirai with the addition of some recent
exploits in the networking equipment [3]. Furthermore, new
botnet malware appears every day. It is a common practice
for the attackers, instead of writing the malware code every
time from scratch, to reuse the code of a previous malware,
make small changes, or even mix the features of multiple
malware. For example, the recently discovered Dark Nexus
botnet generating malware is built on top of Mirai and QBot
code [4][5]. It is exactly this common practice, where
hackers reuse malware code components for building new
malware, which gives a full justification for the research on
the dynamic behavior of existing malware. Analyzing the
characteristic behavioral patterns can lead to the discovery
of methods to mitigate the proliferation of many different
versions of botnet generating malware through their
detection.

The paper is organized as follows: in the Related Work
section, an overview of existing approaches in botnet CnC
communication analysis is given. This section is concluded
with a possibility of extending existing approaches. In the
Methodology section, a detailed description of system
architecture, software tools used, and the CnC botnet
communication analysis process is given. In the Results
section, botnet communication patterns and their statistical
parameters are analyzed. In the Conclusion section, using
the results from previous section, several conclusions are
drawn. This paper is the expanded version of a paper which
was presented at the 2019 TELFOR conference [6].

II. RELATED WORK

There are two most common approaches to the botnet
CnC detection: packet header analysis and deep packet
analysis.

Packet header analysis concerns the analysis of packet
headers, and drawing conclusions about the nature of
network traffic from them. One approach is to use certain

Analysis and Characterization of IoT Malware
Command and Control Communication

Đorđe D. Jovanović and Pavle V. Vuletić

B

Paper received April 30, 2020; revised August 8, 2020; accepted
August 18, 2020. Date of publication December 25, 2020. The
associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Grozdan Petrović.

This paper is revised and expanded version of the paper presented

at the 27th Telecommunications Forum TELFOR 2019 [6].

Đorđe Jovanović is a PhD student at the School of Electrical

Engineering, University of Belgrade, Bul. kralja Aleksandra 73, 11120
Belgrade, Serbia (phone: -; e-mail: jd185001p@student.etf.bg.ac.rs).

Pavle V. Vuletić, is with the School of Electrical Engineering,
University of Belgrade, Bul. kralja Aleksandra 73, 11120 Belgrade,
Serbia (phone: +381-11-381465, e-mail: pavle.vuletic@etf.bg.ac.rs).

Jovanović and Vuletić: Analysis and Characterization of IoT Malware Command and Control Communication 81

elements of the header, such as source and destination IP,
in order to distinguish malicious traffic from normal traffic.
Packets can be collected into conversations, flows or
quadruplets defined as (source IP, destination IP, source
port, destination port), and then analyzed and classified into
malicious and normal conversations based on different
approaches described below [3],[7],[8]. The other approach
displayed in the research literature is to perform an n-gram
analysis on domain name, collecting its statistics in order to
detect anomalies[9],[10].

Deep packet traffic analysis involves analyzing packet
payloads, searching for specific malware signatures and
analyzing specific protocol traffic, such as DNS traffic, to
detect anomalous behavior [11],[12]. Two main techniques
that are used by botnets in order to hide CnC
communication are Domain Generating Algorithms (DGA
for short) and DNS-fluxing [9],[10],[13],[14]. DGA
involves using multiple domains, and attaching them to the
same IP address. DNS-fluxing involves using DNS records
with short timeout (often less than 600 seconds), and
changing the IP address of the CnC server each time the
DNS record expires.

Most of the literature today implements machine learning
or deep learning neural networks to distinguish normal from
malicious network traffic. As an aid to this analysis, a
technique such as whitelist of URLs (Uniform Resource
Locators) and virus analysis tools are used. The data is
gathered either from a well-known dataset, such as CTU-
131 [3],[8] (Czech Technical University-13), or collected
independently. Although this approach has advantages,
such as identifying the key statistical traits of botnet traffic,
it requires a reliable sample for it to work. CTU-13 dataset
consists of old samples of malware communication, which
are not relevant today.

In contrast to these approaches, our aim is to explore the
dynamic behavior of the CnC channel of recent IoT
malware families on a level which is finer grained than the
packet header analysis, without going into deep packet
inspection of packet payloads. Such an approach could
provide additional parameters for the anomaly detection
techniques, thus making them more reliable. The goal of
this paper is to show the CnC behavioral patterns as seen by
the typical network defense systems (intrusion detection
and prevention systems) and to explore the potential of
finding new methods for botnet activity detection and
mitigation.

III. METHODOLOGY

In order to analyze IoT botnet behavior, we used two
RaspberryPi 2B devices and two RaspberryPi 3 devices
with Raspbian OS. We infected them with various
malicious applications, which were downloaded in the
period between June 15th and July 15th 2019. Devices
mentioned were used because they are based on ARM
architecture, since most of the IoT malware can be compiled
for ARM. Two IoT malware families which are the most
common today were analyzed: Mirai and Gafgyt. Eight
Mirai variations were analyzed (ab.arm7, armv7l,

1 https://www.stratosphereips.org/datasets-ctu13

kalon.arm, okane.arm, pandora.arm7, zehir.arm7,
ntpdd.arm8, r4z0r.arm7), for which three DDoS attacks are
recorded. Nine Gafgyt (cc9arm6, soul.arm6, eagle.arm,
eagle.arm7 Demon.arm4, TacoBellGodYo.arm4, frag.arm,
yakuza.arm6, assailant, eagle.arm7, eagle.arm7)
applications are analyzed, for which five DDoS attacks are
recorded. The analysis was performed on real devices in
order to avoid malware polymorphism – the situation in
which malware changes the behavior when it detects the
execution in sandboxes or virtual machines [15].
RaspberryPi devices were connected to a router, which
connected them to the internet. Network topology is shown
in Fig. 1.

Fig. 1. Network topology.

All devices had public IP addresses and the only rule set
on the devices was filtering the traffic to the local network
in order to protect the rest of it from malware infection.

All the infected executables were collected from the
URLHaus2 database. This database collects URLs
containing suspicious or malware files, and assigns tags to
them. We also compared the dynamic malware behavior
with the results of Cuckoo, a well-known free sandbox
malware analyzer, and used static malware code analysis in
order to fully capture malware properties. Packets were
recorded using tcpdump on the Raspberry Pi devices. In
order to filter out only botnet communication, in parallel
with recording the malicious traffic, we captured and
analyzed the traffic of non-infected machines for
comparison. All non-local IP addresses in packet traces
were manually checked for ownership and location using IP
and DNS lookup tools.

In addition to performing botnet communication analysis
manually, we performed a time series analysis on the
collected data. Using the contents of the pcap files and
extracting the message length in bytes, a time series with
bin size of 1s was created, thereby counting the number of
bytes passed during each second of network flow. Network
flow is defined by the quadruplet consisting of: source IP
address, destination IP address, source port and destination
port. The unicast communication within the network is most
often bidirectional. In such cases there will always be two
network flows which belong to one conversation between
the two devices. These two network flows will have the

2 https://urlhaus.abuse.ch/browse/

82 Telfor Journal, Vol. 12, No. 2, 2020.

same but swapped values in the pairs (source IP address,
destination IP address) and (source port, destination port).
We will call such flow pairs related flows. Using the
information from time series, the following parameters
were extracted: the Pearson correlation coefficient between
the two related flows, number of bytes per second in each
flow and the difference of unidirectional flow throughput
between the bins in two related flows. Also, for all the
parameters, the following statistical measures were
calculated for botnet and normal traffic, separately:
minimum, maximum, average, and standard deviation.

The Pearson correlation coefficient is used as a measure
of similarity between two related flows. Values of over 0.7
are considered to indicate strong correlation.

Unidirectional flow throughput is observed in order to
compare how often, in comparison to normal traffic, do
botnets communicate, as well as to provide an estimate on
network load on the bot machine.

Difference of unidirectional flow throughput is used to
indicate symmetric behavior between two directions in a
flow. If the hosts pass a similar number of messages
between them, this measure will be lower, which is
expected in botnet traffic.

A. Mirai botnet

Mirai botnet family is an evolution of the BASHLITE
botnet. It uses brute force methods to break in and infect a
Linux-based machine. The virus spreads by scanning
pseudo-random IP addresses on port 23/2323, avoiding the
addresses in its blacklist (government and military
institutions). Once it finds a valid IP address, it attempts to
guess user credentials. If successful, the machine is
infected, and Mirai proceeds with closing off other ports,
lest no one else take control of the machine. Then the bot
downloads the infected malware, and starts communication
with the CnC server. Once the attack command is received,
bot commences a DDoS attack against the victim.

B. Gafgyt botnet

Gafgyt botnet (also known as
BASHLITE Lizkebab, Qbot, Torlus and LizardStresser) is
a family of IoT malware, using bash vulnerabilities to infect
a Linux-based machine, and issue DDoS attack commands
against a victim.

IV. RESULTS

In this section, malware applications analyzed are
grouped according to their families, Mirai and Gafgyt, as
well as statistical features of traffic flows belonging to
botnet CnC traffic flows and normal traffic flows.
Concerning the malware applications CnC communication
analysis, first the general characteristics of each group are
given. Then, each application is observed with respect to its
particularities. The analysis is divided into three phases of
communication: establishing connection with the CnC,
maintaining the connection and attack command. As for the
description of statistical features, a graph plotting the data
points for each feature of both the botnet and normal traffic
is shown. Afterwards, a deeper analysis of each feature is
given.

A. Uninfected device traffic

Uninfected traffic on these devices is characterized by a
large number of short TCP (Transmission Control Protocol)
session attempts that begin with a SYN packet, initiated by
a remote machine, and end with RST-ACK packet. This is
a background random port scanning over various ports that
can be observed on all machines connected on the internet.
Uninfected device experienced also ICMP (Internet Control
Message Protocol) ECHO requests. Similar behavior is
filtered from the traces of the infected devices. This step
was crucial, in order to filter out all communication that
occurs without the presence of malware.

B. Mirai traffic

In the case of Mirai botnet, the connection is initiated by
the infected machine using TCP handshake, during which it
sent information about itself to the CnC. Malware used
various TCP ports for the CnC communication (e.g. 3301,
1337, 1791) sometimes hiding its operation behind the well-
known ports which pass through the firewalls (e.g.
ntpdd.arm8, which used DNS port 53). There were no DNS
queries for the duration of the infection. The connection is
maintained either by the infected machine, or the CnC, by
sending messages periodically, every 60s. The exact
number of these messages varies, as well as their contents.
Finally, the CnC server sends the attack command, via a
PSH-ACK packet, with all the necessary parameters, to the
infected machine. The bot responds with an ACK packet,
after which the DDoS attack commences. For all of the
variations, the establishing connection phase is the same as
described earlier.

A diagram of Mirai CnC communication maintenance
phase is given in Fig. 2. Data from the packet payload is
enclosed in parentheses, strings are designated by quotation
marks, while the hex code is designated by initial “0x”. The
plus sign denotes string concatenation.

Fig. 2. Mirai CnC communication.

In Fig. 2, the subdivision is as follows: a) represents the
ab.arm7, pandora.arm7 and kalon.arm malware, b)
represents the armv7l malware, c) represents the
ntpdd8.arm8 malware, d) represents the okane.arm and

Jovanović and Vuletić: Analysis and Characterization of IoT Malware Command and Control Communication 83

r4z0r.arm7 malware, and e) represents the zehir.arm7
malware.

In the attack phase, the CnC first sends a packet with a
command string, after which the attack begins. The
command string can be of 2 types: plain-text and hex. For
instance, in the case of “armv7l” malware, the CnC sends a
PSH-ACK packet, with the following attack command:

“.UDP 40.81.59.133 30142 20 32 0 10”

Taking a look at the command string, and comparing
them to the captured traffic, UDP (User Datagram Protocol)
protocol is used. Using static code analysis, a conclusion
has been drawn that the other parameters, from left to right,
are: target IP address, destination port, DDoS attack
duration, option to use SOCK_DGRAM (denoting that a
socket is used for a datagram-based protocol) or
SOCK_RAW (denoting lack of processing by the network
layers) for creating sockets, buffer size, and the number of
attacks against a target. After the command string, the
infected machine sends an ACK packet, and an attack
occurs. This describes the case of the plain-text attack
message.

In the case of “r4z0r” malware, the CnC sends a PSH-
ACK packet, with the following attack command:

 “00 12 00 00 00 1e 09 01 67 5f dd a7
20 01 07 02 38 30”

The attack string was written in hex form, and by
converting the hex values into decimal and ASCII, the
destination IP and port can be deciphered (0x 67 5f dd a7,
which gives 103.95.221.167 for the destination IP; 0x38 30,
which, by converting into ASCII gives 80 for the
destination port). After the command string, the infected
machine sends an ACK packet, and an attack occurs.

C. Gafgyt traffic

In the case of Gafgyt botnet, similarly to Mirai, the
infected machine initiates a TCP session over various ports.
Malware used various TCP ports for the CnC
communication (e.g. 87, 17769, 58215). Botmaster is
contacted directly over IP without using DNS resolution.
After the connection has been established, the infected
machine sends the CnC server a string describing the
hardware and software environment in which the malware
is running. The connection is maintained by the CnC server,
by sending messages periodically, every 60s. The exact
number of these messages varies, as well as their contents.
Finally, the CnC server sends the attack command, via a
PSH-ACK packet, with all the necessary parameters, to the
infected machine. The bot responds with an ACK packet,
after which the DDoS attack commences.

For all of the variations, the establishing connection
phase is the same as described earlier.

A diagram of CnC communication maintenance phase is
given in Fig. 3. Data is enclosed in parentheses, strings are
designated by quotation marks, while the hex code is
designated by initial “0x”. A plus sign denotes string
concatenation.

Fig. 3 Gafgyt CnC communication

In Fig. 3, the subdivision is as follows: a) represents the
cc9arm6, Demon.arm4, eagle.arm and soul.arm6 malware,
b) represents the eagle.arm7 and TacoBellGodYo.arm4
malware, c) represents the frag.arm malware, and d)
represents the yakuza.arm6 malware.

In the attack phase, the CnC first sends a packet with a
command string, after which the attack begins. The
command string can be of 2 plain-text message types: plain-
text and encrypted. For instance, in the case of
“TacoBellGodYo” malware, the CnC sends a PSH-ACK
packet, with the following attack command:

“!* STD 174.214.34.8 4370 300”

While in the instance of “eagle” malware, the attack
command has the following format:

“!* UDP 13.83.247.215 30217 100 32 0 10”

Taking a look at the command string, and comparing
them to the captured traffic, the first argument is the
protocol used. In both of these cases, the UDP protocol was
used for the attack. Using static code analysis revealed the
use of the same syntax for attack description as in the case
of Mirai: target IP address, destination port, DDoS attack
duration, option to use SOCK_DGRAM or SOCK_RAW
for creating sockets, buffer size, and the number of attacks
against a target. After the command string, the infected
machine sends an ACK packet, and an attack occurs. This
describes the case of the plain-text attack message.

Decompiling and static malware code analysis revealed
also other potential attacks like those using TCP over a
predefined port, and other botnet command and control
commands like the option to shut down bot or sending it on
hold for some time.

D. Statistical features of botnet CnC traffic and normal
traffic flows

In order to better understand the differences between
CnC and normal traffic flows, we need to determine in what
range does the data for each type of flow lie for each of the
characteristics mentioned in previous section: the Pearson
correlation coefficient, unidirectional flow throughput,

84 Telfor Journal, Vol. 12, No. 2, 2020.

difference of unidirectional flow throughput. A plot of the
statistical characteristics is given in Fig. 4. Normal flows
are designated by green data points, while the botnet flows
are designated by red data points. The y axis of this plot
serves solely to separate normal and botnet data points.

Fig. 4. Statistical characteristics plot.

As can be seen from the plot, the botnet and normal
traffic flows differ significantly. Botnet traffic flows show
a higher Pearson correlation coefficient, as well as low
unidirectional flow throughput and difference of
unidirectional flow throughput. This is due to the fact that
botnet traffic occurs periodically, in bursts, and botnet and
CnC exchange similar messages during the connection
maintenance phase.

In order to gain a deeper insight into the statistical nature
of these characteristics, we calculated the following for
each one of the metrics: minimum, maximum, mean and
standard deviation. This is useful for gaining a better
understanding of the range and spread for each of the two
types of network flows. The Pearson correlation is
dimensionless, while unidirectional flow throughput
(designated as UFT in subsequent tables) and difference of
unidirectional flow throughput (designated as DUFT in
subsequent tables are displayed in bytes/s. Botnet traffic
flows’ statistics and normal traffic flows’ statistics are
shown in Table 1.

The presented statistics of botnet and normal traffic,
reveals several important properties of the botnet CnC
traffic. The characteristics of botnet traffic are the
following: higher values for the Pearson correlation, and
lower values for the packet count and difference of
unidirectional flow throughput compared to the normal
traffic. Also, the standard deviations of botnet traffic are
significantly smaller than those of the normal traffic.
Having a low spread means that botnet flows of Mirai and
Gafgyt botnets have a unique footprint, which could be used
for creating filters which could ease their detection.

TABLE 1: STATISTICS FOR NORMAL FLOWS’ CHARACTERISTICS

AND BOTNET FLOWS’ CHARACTERISTICS.

PEARSON

CORRELATION
UFT DUFT

Normal Flows

MINIMUM 0.501309 0.015455 0

MAXIMUM 1 8501640 66353.27

MEAN 0.950483 20379.22 225.6704

STD 0.093984 335266.9 2278.214

Botnet Flows

MINIMUM 0.886722 0.944156 0.005734

MAXIMUM 1 318.8587 168.7144

MEAN 0.97302 10.86656 6.772756

STD 0.027745 46.37664 31.47784

V. CONCLUSION

This analysis served to detect behavior inherent to the
recent versions of Mirai and Gafgyt IoT malware families,
in order to aid botnet detection. There are several important
conclusions of this research. First, in order to avoid deep
packet inspection which uses signature-based detection,
different malware versions use various strings formats in
the CnC and attack commands. Second, all explored IoT
malware-initiated communication with the botmaster
avoiding DNS query. This means that IoT malware CnC
still does not use advanced hiding techniques like DNS-
fluxing or DGA, but also that this is a characteristic
behavior pattern which can be used as an input into the
suspicious behavior analysis. Third, all samples of both
malware types showed characteristic CnC lifecycle phases
and the periodic CnC maintenance pattern which cannot be
observed with the flow or packet header analyses. Fourth,
static code analysis revealed the strategies hackers use to
avoid detection: constant minor changes of the ports, strings
and IP addresses bots use to communicate. Fifth, the botnet
CnC communication has a distinct behavior regarding the
Pearson correlation, unidirectional flow throughput and
difference of unidirectional flow throughput. However, the
overall architecture of the malware remains the same for a
longer period of time preserving the characteristic
communication patterns. Analysis using Cuckoo sandbox
was not particularly useful, as the information obtained
from it about the dynamic malware behavior was too
modest to be used for a more serious analysis (only the IP
address of the botmaster was revealed). These results are
encouraging for our further research towards creating a
stateful programmable packet processing for the detection
of botnet CnC, using this analysis as a starting point.

Jovanović and Vuletić: Analysis and Characterization of IoT Malware Command and Control Communication 85

REFERENCES

[1] G. Vormayr, T. Zseby, and J. Fabini, “Botnet Communication
Patterns,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2768–
2796, 2017.

[2] M. Antonakakis et al., “Understanding the Mirai Botnet This paper
is included in the Proceedings of the Understanding the Mirai
Botnet,” USENIX Secur., pp. 1093–1110, 2017.

[3] R. Chen, W. Niu, X. Zhang, Z. Zhuo, and F. Lv, “An Effective
Conversation-Based Botnet Detection Method,” Math. Probl. Eng.,
vol. 2017, pp. 1–9, 2017.

[4] B. Krebs, "Zyxel Flaw Powers New Mirai IoT Botnet Strain", Krebs
on Security website, https://krebsonsecurity.com/2020/03/zxyel-
flaw-powers-new-mirai-iot-botnet-strain/ (accessed on April 25th
2020)

[5] R. Lakshmanan, "Dark Nexus: A New Emerging IoT Botnet
Malware Spotted in the Wild", The Hacker News,
https://thehackernews.com/2020/04/darknexus-iot-ddos-botnet.html
(accessed on April 25th 2020)

[6] Đ. D. Jovanović and P. V. Vuletić, "Analysis and Characterization of
IoT Malware Command and Control Communication,", 2019 27th
Telecommunications Forum (TELFOR), Belgrade, Serbia, 2019, pp.
1-4.

[7] P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan, “PeerShark:
Detecting peer-to-peer botnets by tracking conversations,” Proc. -
IEEE Symp. Secur. Priv., vol. 2014-Janua, pp. 108–115, 2014.

[8] S. Chowdhury et al., “Botnet detection using graph-based feature
clustering,” J. Big Data, vol. 4, no. 1, 2017.

[9] V. Tong and G. Nguyen, “A method for detecting DGA botnet based
on semantic and cluster analysis,” ACM Int. Conf. Proceeding Ser.,
vol. 08-09-Dece, no. December, pp. 272–277, 2016.

[10] R. Sharifnya and M. Abadi, “DFBotKiller: Domain-flux botnet
detection based on the history of group activities and failures in DNS
traffic,” Digit. Investig., vol. 12, pp. 15–26, 2015.

[11] J. Lee, J. Kwon, H. J. Shin, and H. Lee, “Tracking multiple C&C
botnets by analyzing DNS traffic,” 2010 6th IEEE Work. Secur.
Netw. Protoc. NPSec 2010, no. August, pp. 67–72, 2010.

[12] J. Kwon, J. Lee, H. Lee, and A. Perrig, “PsyBoG: A scalable botnet
detection method for large-scale DNS traffic,” Comput. Networks,
vol. 97, pp. 48–73, 2016.

[13] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-
Padilla, “A Comprehensive Measurement Study of Domain
Generating Malware,” pp. 1996–2014, 2016.

[14] T. S. Wang, H. T. Lin, W. T. Cheng, and C. Y. Chen, “DBod:
Clustering and detecting DGA-based botnets using DNS traffic
analysis,” Comput. Secur., vol. 64, pp. 1–15, 2017.

[15] J. Gardiner, M. Cova, and S. Nagaraja, “Command & Control:
Understanding, Denying and Detecting,” arXiv.org, vol. cs.CR, no.
February, p. 1136, 2014.

