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Abstract — The emergence of Mirai botnet in 2016 took 

worldwide research teams by surprise, proving that a large 
number of low-performance IoT devices could be hacked and 
used for illegal purposes, causing extremely voluminous DDoS 
attacks. Therefore, a thorough inspection of the current state 
of IoT botnets is essential. In this paper, we analyze the 
dynamic behavior and command and control channels of two 
classes of IoT botnets, Mirai and Gafgyt. Based on collected 
information, a comparative analysis and key phases of botnet 
communication is provided. Such an analysis will serve as a 
basis for smart botnet detection mechanisms. 
Keywords — Botnets, CnC communication, IoT. 

I. INTRODUCTION 

OTNETS represent a network of computers (bots) which 
are under the control of a malicious hacker - botmaster. 

Botmasters use the machines under their control for various 
types of malicious activities, such as: performing DDoS 
(Distributed Denial of Service) attacks, spreading 
ransomware, stealing personal information, unwanted 
digital currency mining, etc. [1] A botmaster communicates 
with infected computers via the Command and Control 
(CnC or C2) channel. By exploring command and control 
dynamic behavior patterns and creating a system that can 
efficiently discover botnet communication, it is possible to 
stop the bots in the earlier stages of the attack lifecycle. This 
is to prevent them from becoming activated by the 
botmaster and involved in the attack, and also to mitigate 
threats to the information security. Preventing botnet 
creation in a target network will not stop the attacks from 
another network against the target. However, widespread 
use of similar systems would increase the overall 
information security of the devices connected to the 
internet. The CnC channel is a single point of failure for the 
botnet and its detection, and mitigation would fully disable 
the control of the bots. CnC channels evolved in time, as 
well as their detection avoidance techniques, which became 
more and more sophisticated. Examples being: DNS 
(Domain Name Server) fluxing and DGA (Domain 
Generation Algorithm), mentioned in the next Section. 

The Mirai botnet appeared in 2016. Its power was 
demonstrated by performing DDoS attacks against famous 
sites, such as Krebs on Security and OVH, as well as DNS 
providers Dyn and Lonestar Cell [2]. Infected devices 
included IP cameras and home routers, and their number 
surpassed 200.000. Since the IoT (Internet of Things) 
devices oft-times do not possess even the basic security 
features, they represent a weak spot for any computer 
network. This is the primary reason why researching IoT 
botnets, as well as their CnC communication, is paramount. 

Although the peak of the first Mirai infection was in 
2016, the malware which is based on the Mirai code still 
exists and is very active in building new botnet 
infrastructures. Recently, new botnets have appeared, built 
using a variant of Mirai with the addition of some recent 
exploits in the networking equipment [3]. Furthermore, new 
botnet malware appears every day. It is a common practice 
for the attackers, instead of writing the malware code every 
time from scratch, to reuse the code of a previous malware, 
make small changes, or even mix the features of multiple 
malware. For example, the recently discovered Dark Nexus 
botnet generating malware is built on top of Mirai and QBot 
code [4][5]. It is exactly this common practice, where 
hackers reuse malware code components for building new 
malware, which gives a full justification for the research on 
the dynamic behavior of existing malware. Analyzing the 
characteristic behavioral patterns can lead to the discovery 
of methods to mitigate the proliferation of many different 
versions of botnet generating malware through their 
detection. 

The paper is organized as follows: in the Related Work 
section, an overview of existing approaches in botnet CnC 
communication analysis is given. This section is concluded 
with a possibility of extending existing approaches. In the 
Methodology section, a detailed description of system 
architecture, software tools used, and the CnC botnet 
communication analysis process is given. In the Results 
section, botnet communication patterns and their statistical 
parameters are analyzed. In the Conclusion section, using 
the results from previous section, several conclusions are 
drawn. This paper is the expanded version of a paper which 
was presented at the 2019 TELFOR conference [6]. 

II. RELATED WORK 

There are two most common approaches to the botnet 
CnC detection: packet header analysis and deep packet 
analysis.  

Packet header analysis concerns the analysis of packet 
headers, and drawing conclusions about the nature of 
network traffic from them. One approach is to use certain 
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elements of the header, such as source and destination IP, 
in order to distinguish malicious traffic from normal traffic. 
Packets can be collected into conversations, flows or 
quadruplets defined as (source IP, destination IP, source 
port, destination port), and then analyzed and classified into 
malicious and normal conversations based on different 
approaches described below [3],[7],[8]. The other approach 
displayed in the research literature is to perform an n-gram 
analysis on domain name, collecting its statistics in order to 
detect anomalies[9],[10].  

Deep packet traffic analysis involves analyzing packet 
payloads, searching for specific malware signatures and 
analyzing specific protocol traffic, such as DNS traffic, to 
detect anomalous behavior [11],[12]. Two main techniques 
that are used by botnets in order to hide CnC 
communication are Domain Generating Algorithms (DGA 
for short) and DNS-fluxing [9],[10],[13],[14]. DGA 
involves using multiple domains, and attaching them to the 
same IP address. DNS-fluxing involves using DNS records 
with short timeout (often less than 600 seconds), and 
changing the IP address of the CnC server each time the 
DNS record expires. 

Most of the literature today implements machine learning 
or deep learning neural networks to distinguish normal from 
malicious network traffic. As an aid to this analysis, a 
technique such as whitelist of URLs (Uniform Resource 
Locators) and virus analysis tools are used. The data is 
gathered either from a well-known dataset, such as CTU-
131 [3],[8] (Czech Technical University-13), or collected 
independently. Although this approach has advantages, 
such as identifying the key statistical traits of botnet traffic, 
it requires a reliable sample for it to work. CTU-13 dataset 
consists of old samples of malware communication, which 
are not relevant today.  

In contrast to these approaches, our aim is to explore the 
dynamic behavior of the CnC channel of recent IoT 
malware families on a level which is finer grained than the 
packet header analysis, without going into deep packet 
inspection of packet payloads. Such an approach could 
provide additional parameters for the anomaly detection 
techniques, thus making them more reliable. The goal of 
this paper is to show the CnC behavioral patterns as seen by 
the typical network defense systems (intrusion detection 
and prevention systems) and to explore the potential of 
finding new methods for botnet activity detection and 
mitigation.  

III. METHODOLOGY 

In order to analyze IoT botnet behavior, we used two 
RaspberryPi 2B devices and two RaspberryPi 3 devices 
with Raspbian OS. We infected them with various 
malicious applications, which were downloaded in the 
period between June 15th and July 15th 2019. Devices 
mentioned were used because they are based on ARM 
architecture, since most of the IoT malware can be compiled 
for ARM. Two IoT malware families which are the most 
common today were analyzed: Mirai and Gafgyt. Eight 
Mirai variations were analyzed (ab.arm7, armv7l, 

 
1 https://www.stratosphereips.org/datasets-ctu13 

kalon.arm, okane.arm, pandora.arm7, zehir.arm7, 
ntpdd.arm8, r4z0r.arm7), for which three DDoS attacks are 
recorded. Nine Gafgyt (cc9arm6, soul.arm6, eagle.arm, 
eagle.arm7 Demon.arm4, TacoBellGodYo.arm4, frag.arm, 
yakuza.arm6, assailant, eagle.arm7, eagle.arm7) 
applications are analyzed, for which five DDoS attacks are 
recorded. The analysis was performed on real devices in 
order to avoid malware polymorphism – the situation in 
which malware changes the behavior when it detects the 
execution in sandboxes or virtual machines [15]. 
RaspberryPi devices were connected to a router, which 
connected them to the internet. Network topology is shown 
in Fig. 1. 

 

Fig. 1. Network topology. 

All devices had public IP addresses and the only rule set 
on the devices was filtering the traffic to the local network 
in order to protect the rest of it from malware infection. 

All the infected executables were collected from the 
URLHaus2 database. This database collects URLs 
containing suspicious or malware files, and assigns tags to 
them. We also compared the dynamic malware behavior 
with the results of Cuckoo, a well-known free sandbox 
malware analyzer, and used static malware code analysis in 
order to fully capture malware properties. Packets were 
recorded using tcpdump on the Raspberry Pi devices. In 
order to filter out only botnet communication, in parallel 
with recording the malicious traffic, we captured and 
analyzed the traffic of non-infected machines for 
comparison. All non-local IP addresses in packet traces 
were manually checked for ownership and location using IP 
and DNS lookup tools. 

In addition to performing botnet communication analysis 
manually, we performed a time series analysis on the 
collected data. Using the contents of the pcap files and 
extracting the message length in bytes, a time series with 
bin size of 1s was created, thereby counting the number of 
bytes passed during each second of network flow. Network 
flow is defined by the quadruplet consisting of: source IP 
address, destination IP address, source port and destination 
port. The unicast communication within the network is most 
often bidirectional. In such cases there will always be two 
network flows which belong to one conversation between 
the two devices. These two network flows will have the 

2 https://urlhaus.abuse.ch/browse/ 
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same but swapped values in the pairs (source IP address, 
destination IP address) and (source port, destination port). 
We will call such flow pairs related flows. Using the 
information from time series, the following parameters 
were extracted: the Pearson correlation coefficient between 
the two related flows, number of bytes per second in each 
flow and the difference of unidirectional flow throughput 
between the bins in two related flows. Also, for all the 
parameters, the following statistical measures were 
calculated for botnet and normal traffic, separately: 
minimum, maximum, average, and standard deviation. 

The Pearson correlation coefficient is used as a measure 
of similarity between two related flows. Values of over 0.7 
are considered to indicate strong correlation.  

Unidirectional flow throughput is observed in order to 
compare how often, in comparison to normal traffic, do 
botnets communicate, as well as to provide an estimate on 
network load on the bot machine. 

Difference of unidirectional flow throughput is used to 
indicate symmetric behavior between two directions in a 
flow. If the hosts pass a similar number of messages 
between them, this measure will be lower, which is 
expected in botnet traffic. 

A. Mirai botnet 

Mirai botnet family is an evolution of the BASHLITE 
botnet. It uses brute force methods to break in and infect a 
Linux-based machine. The virus spreads by scanning 
pseudo-random IP addresses on port 23/2323, avoiding the 
addresses in its blacklist (government and military 
institutions). Once it finds a valid IP address, it attempts to 
guess user credentials. If successful, the machine is 
infected, and Mirai proceeds with closing off other ports, 
lest no one else take control of the machine. Then the bot 
downloads the infected malware, and starts communication 
with the CnC server. Once the attack command is received, 
bot commences a DDoS attack against the victim. 

B. Gafgyt botnet 

Gafgyt botnet (also known as 
BASHLITE  Lizkebab, Qbot, Torlus and LizardStresser) is 
a family of IoT malware, using bash vulnerabilities to infect 
a Linux-based machine, and issue DDoS attack commands 
against a victim. 

IV. RESULTS 

In this section, malware applications analyzed are 
grouped according to their families, Mirai and Gafgyt, as 
well as statistical features of traffic flows belonging to 
botnet CnC traffic flows and normal traffic flows. 
Concerning the malware applications CnC communication 
analysis, first the general characteristics of each group are 
given. Then, each application is observed with respect to its 
particularities. The analysis is divided into three phases of 
communication: establishing connection with the CnC, 
maintaining the connection and attack command. As for the 
description of statistical features, a graph plotting the data 
points for each feature of both the botnet and normal traffic 
is shown. Afterwards, a deeper analysis of each feature is 
given. 

A. Uninfected device traffic 

Uninfected traffic on these devices is characterized by a 
large number of short TCP (Transmission Control Protocol) 
session attempts that begin with a SYN packet, initiated by 
a remote machine, and end with RST-ACK packet. This is 
a background random port scanning over various ports that 
can be observed on all machines connected on the internet. 
Uninfected device experienced also ICMP (Internet Control 
Message Protocol) ECHO requests. Similar behavior is 
filtered from the traces of the infected devices. This step 
was crucial, in order to filter out all communication that 
occurs without the presence of malware. 

B. Mirai traffic 

In the case of Mirai botnet, the connection is initiated by 
the infected machine using TCP handshake, during which it 
sent information about itself to the CnC. Malware used 
various TCP ports for the CnC communication (e.g. 3301, 
1337, 1791) sometimes hiding its operation behind the well-
known ports which pass through the firewalls (e.g. 
ntpdd.arm8, which used DNS port 53). There were no DNS 
queries for the duration of the infection. The connection is 
maintained either by the infected machine, or the CnC, by 
sending messages periodically, every 60s. The exact 
number of these messages varies, as well as their contents. 
Finally, the CnC server sends the attack command, via a 
PSH-ACK packet, with all the necessary parameters, to the 
infected machine. The bot responds with an ACK packet, 
after which the DDoS attack commences. For all of the 
variations, the establishing connection phase is the same as 
described earlier. 

A diagram of Mirai CnC communication maintenance 
phase is given in Fig. 2. Data from the packet payload is 
enclosed in parentheses, strings are designated by quotation 
marks, while the hex code is designated by initial “0x”. The 
plus sign denotes string concatenation. 

 

Fig. 2. Mirai CnC communication. 

In Fig. 2, the subdivision is as follows: a) represents the 
ab.arm7, pandora.arm7 and kalon.arm malware, b) 
represents the armv7l malware, c) represents the 
ntpdd8.arm8 malware, d) represents the okane.arm and 
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r4z0r.arm7 malware, and e) represents the zehir.arm7 
malware. 

In the attack phase, the CnC first sends a packet with a 
command string, after which the attack begins. The 
command string can be of 2 types: plain-text and hex. For 
instance, in the case of “armv7l” malware, the CnC sends a 
PSH-ACK packet, with the following attack command: 

“.UDP 40.81.59.133 30142  20 32 0 10” 

Taking a look at the command string, and comparing 
them to the captured traffic, UDP (User Datagram Protocol) 
protocol is used. Using static code analysis, a conclusion 
has been drawn that the other parameters, from left to right, 
are: target IP address, destination port, DDoS attack 
duration, option to use SOCK_DGRAM (denoting that a 
socket is used for a datagram-based protocol) or 
SOCK_RAW (denoting lack of processing by the network 
layers) for creating sockets, buffer size, and the number of 
attacks against a target. After the command string, the 
infected machine sends an ACK packet, and an attack 
occurs. This describes the case of the plain-text attack 
message. 

In the case of “r4z0r” malware, the CnC sends a PSH-
ACK packet, with the following attack command: 

 “00 12 00 00 00 1e 09 01 67 5f dd a7 
20 01 07 02 38 30” 

The attack string was written in hex form, and by 
converting the hex values into decimal and ASCII, the 
destination IP and port can be deciphered (0x 67 5f dd a7, 
which gives 103.95.221.167 for the destination IP; 0x38 30, 
which, by converting into ASCII gives 80 for the 
destination port). After the command string, the infected 
machine sends an ACK packet, and an attack occurs.  

 

C. Gafgyt traffic 

In the case of Gafgyt botnet, similarly to Mirai, the 
infected machine initiates a TCP session over various ports. 
Malware used various TCP ports for the CnC 
communication (e.g. 87, 17769, 58215). Botmaster is 
contacted directly over IP without using DNS resolution. 
After the connection has been established, the infected 
machine sends the CnC server a string describing the 
hardware and software environment in which the malware 
is running. The connection is maintained by the CnC server, 
by sending messages periodically, every 60s. The exact 
number of these messages varies, as well as their contents. 
Finally, the CnC server sends the attack command, via a 
PSH-ACK packet, with all the necessary parameters, to the 
infected machine. The bot responds with an ACK packet, 
after which the DDoS attack commences. 

For all of the variations, the establishing connection 
phase is the same as described earlier.  

A diagram of CnC communication maintenance phase is 
given in Fig. 3. Data is enclosed in parentheses, strings are 
designated by quotation marks, while the hex code is 
designated by initial “0x”. A plus sign denotes string 
concatenation. 
 

 
Fig. 3 Gafgyt CnC communication 

In Fig. 3, the subdivision is as follows: a) represents the 
cc9arm6, Demon.arm4, eagle.arm and soul.arm6 malware, 
b) represents the eagle.arm7 and TacoBellGodYo.arm4 
malware, c) represents the frag.arm  malware, and d) 
represents the yakuza.arm6 malware. 

In the attack phase, the CnC first sends a packet with a 
command string, after which the attack begins. The 
command string can be of 2 plain-text message types: plain-
text and encrypted. For instance, in the case of 
“TacoBellGodYo” malware, the CnC sends a PSH-ACK 
packet, with the following attack command: 

“!* STD 174.214.34.8 4370 300” 

While in the instance of “eagle” malware, the attack 
command has the following format: 

“!* UDP 13.83.247.215 30217 100 32 0 10” 

Taking a look at the command string, and comparing 
them to the captured traffic, the first argument is the 
protocol used. In both of these cases, the UDP protocol was 
used for the attack. Using static code analysis revealed the 
use of the same syntax for attack description as in the case 
of Mirai: target IP address, destination port, DDoS attack 
duration, option to use SOCK_DGRAM or SOCK_RAW 
for creating sockets, buffer size, and the number of attacks 
against a target. After the command string, the infected 
machine sends an ACK packet, and an attack occurs. This 
describes the case of the plain-text attack message. 

Decompiling and static malware code analysis revealed 
also other potential attacks like those using TCP over a 
predefined port, and other botnet command and control 
commands like the option to shut down bot or sending it on 
hold for some time. 

D. Statistical features of botnet CnC traffic and normal 
traffic flows 

In order to better understand the differences between 
CnC and normal traffic flows, we need to determine in what 
range does the data for each type of flow lie for each of the 
characteristics mentioned in previous section: the Pearson 
correlation coefficient, unidirectional flow throughput, 
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difference of unidirectional flow throughput. A plot of the 
statistical characteristics is given in Fig. 4. Normal flows 
are designated by green data points, while the botnet flows 
are designated by red data points. The y axis of this plot 
serves solely to separate normal and botnet data points. 

 

 
Fig. 4. Statistical characteristics plot. 

As can be seen from the plot, the botnet and normal 
traffic flows differ significantly. Botnet traffic flows show 
a higher Pearson correlation coefficient, as well as low 
unidirectional flow throughput and difference of 
unidirectional flow throughput. This is due to the fact that 
botnet traffic occurs periodically, in bursts, and botnet and 
CnC exchange similar messages during the connection 
maintenance phase. 

In order to gain a deeper insight into the statistical nature 
of these characteristics, we calculated the following for 
each one of the metrics: minimum, maximum, mean and 
standard deviation. This is useful for gaining a better 
understanding of the range and spread for each of the two 
types of network flows. The Pearson correlation is 
dimensionless, while unidirectional flow throughput 
(designated as UFT in subsequent tables) and difference of 
unidirectional flow throughput (designated as DUFT in 
subsequent tables are displayed in bytes/s. Botnet traffic 
flows’ statistics and normal traffic flows’ statistics are 
shown in Table 1. 

The presented statistics of botnet and normal traffic, 
reveals several important properties of the botnet CnC 
traffic. The characteristics of botnet traffic are the 
following: higher values for the Pearson correlation, and 
lower values for the packet count and difference of 
unidirectional flow throughput compared to the normal 
traffic. Also, the standard deviations of botnet traffic are 
significantly smaller than those of the normal traffic. 
Having a low spread means that botnet flows of Mirai and 
Gafgyt botnets have a unique footprint, which could be used 
for creating filters which could ease their detection. 

TABLE 1: STATISTICS FOR NORMAL FLOWS’ CHARACTERISTICS 

AND BOTNET FLOWS’ CHARACTERISTICS. 

PEARSON 

CORRELATION
UFT DUFT

Normal Flows 

MINIMUM 0.501309 0.015455 0

MAXIMUM 1 8501640 66353.27

MEAN 0.950483 20379.22 225.6704

STD 0.093984 335266.9 2278.214

Botnet Flows 

MINIMUM 0.886722 0.944156 0.005734

MAXIMUM 1 318.8587 168.7144

MEAN 0.97302 10.86656 6.772756

STD 0.027745 46.37664 31.47784

 

V. CONCLUSION 

This analysis served to detect behavior inherent to the 
recent versions of Mirai and Gafgyt IoT malware families, 
in order to aid botnet detection. There are several important 
conclusions of this research. First, in order to avoid deep 
packet inspection which uses signature-based detection, 
different malware versions use various strings formats in 
the CnC and attack commands. Second, all explored IoT 
malware-initiated communication with the botmaster 
avoiding DNS query. This means that IoT malware CnC 
still does not use advanced hiding techniques like DNS-
fluxing or DGA, but also that this is a characteristic 
behavior pattern which can be used as an input into the 
suspicious behavior analysis. Third, all samples of both 
malware types showed characteristic CnC lifecycle phases 
and the periodic CnC maintenance pattern which cannot be 
observed with the flow or packet header analyses. Fourth, 
static code analysis revealed the strategies hackers use to 
avoid detection: constant minor changes of the ports, strings 
and IP addresses bots use to communicate. Fifth, the botnet 
CnC communication has a distinct behavior regarding the 
Pearson correlation, unidirectional flow throughput and 
difference of unidirectional flow throughput. However, the 
overall architecture of the malware remains the same for a 
longer period of time preserving the characteristic 
communication patterns. Analysis using Cuckoo sandbox 
was not particularly useful, as the information obtained 
from it about the dynamic malware behavior was too 
modest to be used for a more serious analysis (only the IP 
address of the botmaster was revealed). These results are 
encouraging for our further research towards creating a 
stateful programmable packet processing for the detection 
of botnet CnC, using this analysis as a starting point. 
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