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Abstract — In automatic speech recognition systems, the 
training data used for system development and the data 
actually obtained from the users of the system sometimes 
significantly differ in practice. However, other, more similar 
data may be available. Transfer learning can help to exploit 
such similar data for training in order to boost the automatic 
speech recognizer’s performance for a certain domain. This 
paper presents a few applications of transfer learning in the 
context of speech recognition, specifically for the Serbian 
language. Several methods are proposed, with the goal of 
optimizing system performance on a specific part of the 
existing speech database for Serbian, or in a noisy 
environment. The experimental results evaluated on a test set 
from the desired domain show significant improvement in 
both word error rate and character error rate. 

Keywords — Automatic speech recognition, Kaldi speech 
recognition toolkit, transfer learning, noise adaptation, 
Serbian. 

I. INTRODUCTION 

UTOMATIC speech recognition (ASR) is a technology 
that allows computers to convert spoken words into 

text, i.e., to transcribe what has been said. It has many 
contemporary applications in areas that involve 
communication between humans and machines. These 
applications include dictation (automatic transcription) 
systems, voice assistant applications for smartphones, 
various smart home uses, automated call centers, as well as 
an array of tools for aiding people with certain disabilities. 

In the past several years, many advances were reported 
in ASR research for the Serbian language. Most recent 
research is directed towards language modeling, as the 
inflectivity of Serbian posed many problems for large 
vocabulary ASR systems. Different recurrent neural 
network based language models were trained and tested, as 
well as variants that use embedding vectors as word 
representations and incorporate additional lexical and 
morphological features [1] - [2]. On the other hand, the 
latest acoustic models involved purely sequence-trained 
deep neural networks with subsampling, specifically 
designed to better model longer temporal contexts [3] - [4]. 
These models included accent-specific vowel models, Mel-
frequency cepstral coefficients (MFCCs), pitch features and 
i-vectors [5] for the purpose of adaptation to different 
speakers and channels. There were also experiments using 
end-to-end architectures, but they did not provide 
improvements in error rates [6]. 

Speech database expansion is the basic way to upgrade 
acoustic models. This can be done by preparing and adding 
speech data for more speakers, more utterance types or 
different environments. However, database expansion can 
also be performed artificially in several ways – by 
modifying existing spoken data using speech speed and 
pitch manipulation, utilizing waveform scaling (volume 
manipulation), or by adding some amount of noise 
(artificial or real-life recorded noise) to the existing 
database. All of these methods have already been examined 
for Serbian (see Sect. 3 for details on what kind of 
expansion was used for experiments in this paper) [7]. 

Another way to create more robust acoustic models, 
especially for more specific domains, is transfer learning. 
Transfer learning is a machine learning method where a 
model developed for one task (e.g. large vocabulary 
continuous speech recognition in a general setting) is reused 
as the starting point for a model on another task (e.g. ASR 
for a given domain or speech style, different emotions, 
different channel or environment, or even a completely 
different language) [8]. It is also referred to as domain 
adaptation. The resulting models should show improved 
performance on the second task. The condition that the 
models trained for the first task are general enough is of 
most importance. Transfer learning is particularly useful 
when there is a limited amount of data for the second task 
[8] - [9]. For all the various types of transfer learning 
techniques, deep neural networks that have many hidden 
layers and are trained using contemporary methods have 
been shown to suit the best [10]. An illustrative diagram of 
the notion of transfer learning in general is displayed in 
Fig. 1. 
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In this paper, a transfer learning method is examined 
where the additional acoustic model training is performed 
on a smaller part of the larger database, which includes 
utterances typical for ASR systems that are based on 
command-response human-machine interaction (HMI). As 
a result, the final system should have significantly higher 
word recognition rates on utterances of that type and be 
more robust in interactions from the desired domain. This is 
especially important when the desired use on smartphones 
and similar platforms is taken into account [11] – here, the 
small amount of available in-domain data is paired with the 
goal of having somewhat simpler neural network models for 
the generally less powerful hardware of mobile phones 
(therefore simply increasing the number of hidden layers in 
the neural network or the number of neurons per layer is not 
the preferred method for improving the recognition rates). 

 
Fig. 1. Transfer learning diagram. 

Another transfer learning application is also examined in 
the paper – model adaptation to a noisy environment. Here, 
the general ASR model is tuned using recordings of pure 
noise, or a combination of clean speech and pure noise for 
various environmental settings. 

The remainder of this paper is organized as follows. 
Section II discusses the experimental setup and the applied 
training methods. In Section III, all of the used speech 
databases are briefly introduced – both the whole database 
and the HMI part for tuning, as well as databases with noise. 
The experimental results are then presented in Section IV. 
Finally, conclusions are drawn and future work is pointed 
out in Section V. 

II. EXPERIMENTAL SETUP 

The baseline model in experiment 1 is a so-called "chain" 
sub-sampled time-delay deep neural network (TDNN), 

trained using cross-entropy training and a sequence-level 
objective function [3], [4], [7]. The training procedure 
consists of the pre-DNN and the DNN phase. The pre-DNN 
phase involves the extraction of features from short frames 
of audio signals (static features including 14 MFCCs, 
energy and 3 pitch-related features – probability of voicing, 
log-pitch and delta-pitch, as well as dynamic features 
representing the first and second derivatives of the static 
features – the final feature vector is 54-dimensional), initial 
flat-start monophone HMM-GMM training, triphone 
HMM-GMM training (targeting 3500 HMM states and 
35000 Gaussians), as well as speaker adaptive training 
(SAT, targeting the same model complexity), where the 
possibility of model adaptation based on maximum 
likelihood linear regression (MLLR) for individual 
speakers is introduced [12]. The final pre-DNN HMM-
GMM model (the SAT model) is then used to provide input 
data alignments for the deep neural network (DNN) 
training. The DNN phase uses 40 high-resolution MFCCs 
as features, calculated on frames with duration of 30 ms and 
time shift of 10 ms between the adjacent frames, as well as 
the three previously described pitch-based features, and 
finally a 100 dimensional speaker identity vector, or i-
vector, producing a 143 dimensional feature vector as input. 

The neural network in experiment 1 consists of eight 
hidden layers, each containing 625 neurons. The lower 
TDNN layers are trained using temporal context windows 
that include the preceding, the current and the following 
frame (it is said that they are spliced in a {-1, 0, 1} manner), 
while the training of higher layers is performed using 
windows of three frames as well, but with 3-frame-long 
gaps between them (spliced in a {-3, 0, 3} manner). For 
example, if the three initial layers were spliced in a {-1, 0, 
1} manner, and the other four layers (4-7) in a {-3, 0, 3} 
manner, that is denoted as "3+4" in Table 1. The acoustic 
model was trained using the widely used Kaldi speech 
recognition toolkit. The network is trained for 4 epochs, and 
the total number of training iterations is, as always, 
determined by the quantity of available training data [3]. 

The DNN in the second experiment differs in complexity 
– it has 10 hidden layers, 1024 neurons each. Other 
parameters are the same. It was trained for 5 epochs (2235 
iterations). The database it was trained on also differs (see 
Sect. 3 for details). 

The language model is a 3-gram ARPA language model, 
trained using the SRILM toolkit [13], the Kneser-Ney 
smoothing method and an n-gram pruning parameter of 
10-7, which have provided optimal results in previous 

TABLE 1: TRAINING PARAMETERS FOR THE BASELINE AND TRANSFER LEARNING (TL) MODELS (BOTH EXPERIMENTS). 

Experiment Training #layers #neurons 
Layer 

splicing
#epochs 

(iterations)
Primary LR 

factor 
Output  

LR factor

Exp. 1 

Baseline 8 

625 

3+4 4 (247) - - 

TL +3L 8+3 3+7 +4 (80) 0.25 1.00 

TL WT 8 
3+4 +4 (80) 0.25 1.00 

3+4 +4 (80) 0.50 0.50 

Exp. 2 

Baseline 

10 1024 4+5 

5 (2235) - - 

TL WT N +4 (7) 
0.25 1.00 

TL WT SN +4 (164) 
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research [14]. The procedure resulted in 249809 unigrams, 
about 1.87 million bigrams and 551 thousand trigrams. 

For experiment 1, in order to retain the acoustic 
variability and knowledge provided by the baseline model 
trained on the "complete" database (see Sect. 3), and at the 
same time adapt the model for the specific HMI domain, 
three different transfer learning configurations have been 
examined. In the first setup, 3 additional layers are added to 
the original neural network configuration ("TL +3L"). The 
transferred layers are trained with a smaller learning rate 
(LR) factor of 0.25 (denoted as primary LR factor in Table 
1; the values are given in the range of 0 to 1, 0 meaning that 
the transferred parameters are immutable). The learning rate 
factor for the additional layers is set to 1. The network is 
trained for 4 additional epochs (80 iterations based on 
provided data). 

In the second setup, weight transfer approach was applied 
("TL WT"), i.e., the network is pre-trained using the 
"complete" database, and then fine-tuned using parts of the 
database from the specific domain [15]. The LR factor for 
transferred layers was set to 0.25, while the last layer 
(output layer) was trained with the LR factor of 1. For the 
third setup, a similar configuration has been used, the 
difference being in the primary learning rate factor, which 
is set to 0.5 (faster tuning), as well as in the LR factor for 
the output layer, which is set to the same value (0.5). 

For experiment 2, only the weight transfer approach was 
used, with LR factors of 0.25 (primary) and 1 (output). The 
tuning was performed using only pure noise recordings for 
the first setup (experiment 2A – "TL WT N"), or a 
combination of regular spoken data and noise recordings for 

the second setup (experiment 2B – "TL WT SN"). In both 
cases, the tuning lasted for 4 additional epochs, but of 
course, there were many more iterations in the second case 
(a lot more training data). All of the parameters of the 
above-mentioned setups can be observed in Table 1. 

III. DATABASE DESCRIPTION 

A. Exp. 1: Complete Database 

The "complete" database in experiment 1 is the recently 
expanded speech database for the Serbian language [7]. The 
database consists of audio book recordings (recorded in a 
studio environment, spoken by professional speakers, 32 
male and 64 original female speakers, 168 hours of data in 
total), radio talk show recordings (179 hours of data, 21 
male and 14 female speakers), and mobile phone HMI 
recordings (61 hours in total, 169 male and 181 female 
speakers). Audio data is sampled at 16 kHz, 16 bits per 
sample, mono PCM. For the first and second part of the 
database (books and talk shows), the original data for each 
speaker (for speakers with enough data) is separated into 
chunks of 30-35 minutes at most. Various combinations of 
speech speed and pitch modifications have been applied to 
each of these chunks in order to equalize the amount of 
audio data per speaker, resulting in a certain number of 
mutually distinct sub-speakers (398 and 420 distinct sub-
speakers for audio books and radio shows, respectively). A 
different amount of noise is also added for the baseline 
model training – the resulting database included the "pure" 
database (recordings without artificially added noise), SNR 
11 database (with added noise and signal-to-noise ratio of 
11 dB), SNR 13 database (signal-to-noise ratio of 13 dB) 

Fig. 2. Word error rate for baseline and transfer learning models ("complete" database). 
 

Fig. 3. Character error rate for baseline and transfer learning models ("complete" database). 
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and SNR 15 database (signal-to-noise ratio of 15 dB), as 
well as recordings with pure noise. These noise recordings 
varied in type – traffic noises, "cocktail party" noises, 
construction noises, wind noises, etc. For testing purposes, 
29 hours of audio data was extracted from 81 sub-speakers 
(which were excluded from the training set in their entirety). 

B. Exp. 1: Transfer Learning Database 

The Serbian "mobile" speech database (the third part of 
the "complete" database) consists of mobile phone 
recordings – these include various commands, questions, 
numbers, dates, locations, and some other inquiry-based 
utterances, which can be expected in an interaction with a 
voice assistant type application on a smartphone. The 
utterances are freely spoken, and are a lot shorter in 
comparison to the other two database parts. The vocabulary 
is highly domain-oriented and much smaller (consisting of 
less than 4000 different words). This time, the "pure" 
database and the SNR 11 database (this was determined to 
be the usual amount of noise to be expected in this type of 
communication), as well as the pure noise recordings, were 
used for DNN tuning. 

C. Exp. 2: Complete Database 

The "complete" database in the second experiment 
included the "pure" part (with no added noise) of the 
"complete" database from the first experiment, as well as 
additional Croatian audio data (due to the similarity of the 
two languages this is possible) [7]. The Croatian data also 
includes audio books, radio talk shows and "mobile" HMI 
recordings, which added up to around 535 hours (therefore 
doubling the original amount of data), separated into 897 
and 845 distinct male and female sub-speakers, 

respectively. On top of that, noised recordings (from both 
the Serbian and Croatian parts) with a SNR of 17 dB were 
added. The training data was finally tripled using speed 
perturbation, i.e., by using added speed-up and slowed-
down speech (by 15% each). The test database is the same 
as in experiment 1, but in some tests noise was added with 
a SNR of 9 dB or 13 dB. 

D. Exp. 2: Transfer Learning Databases 

For the first setup (exp. 2A), only recordings with pure 
noise were used for model tuning (the same recordings 
mentioned in Sec. 3A). In total, there is around 7.5 hours of 
them. This database was multiplied 64 times, to be 
comparable to the "complete" database in length. 

For the second setup (exp. 2B), a part of the "complete" 
database was used – the whole Serbian "pure" unmodified 
part (408 hours), plus additional 174 hours of Serbian audio 
books and radio show recordings, totaling to about 582 
hours. This database was then randomly sampled, so about 
a fifth of the audio files were actually used for transfer 
learning (about 116 hours). Finally, the pure noise database 
multiplied 8 times was added to this set, achieving a 2:1 
ratio between spoken and noise data. 

IV. EXPERIMENTAL RESULTS 

The results of experiment 1 are given in Figs. 2 to 5. In 
Fig. 2 and 3, the results are given for the "complete" 
database – the baseline and transfer learning configurations 
in terms of word error rate (WER) and character error rate 
(CER). All transfer learning approaches led to a significant 
increase in error rates in comparison to the baseline model, 
indicating that the models have been fine-tuned for a 

Fig. 4. Word error rate for baseline and transfer learning models (mobile HMI database). 
 

Fig. 5. Character error rate for baseline and transfer learning models (mobile HMI database). 
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specific domain. 
In Fig. 4 and 5, the results are presented for the Serbian 

"mobile" HMI database. A significant decrease in both 
WER and CER (16.7% and 10.8% relative decrease, 
respectively) has been obtained. The second setup provided 
the best WER (4.44%). The best CER was obtained for the 
third setup (1.26%). Better results in terms of error rates 
have been obtained for all three configurations in 
comparison to the baseline model. The results are 
comparable with improvements from weight transfer 
approaches described in [15] given for English, or even 
better (probably because of the highly specific target 
domain in our case). 

In Fig. 6 to 9, the results are given for experiment 2. For 
the first setup (exp. 2A, Fig. 6 and 7), an attempt has been 
made to adapt the whole network using only pure noise 
recordings. As expected, the approach led to significant 
disruption in terms of WER, since the whole network was 
adapted only to noise. E0 represents the original (baseline 
models), while E1-E4 correspond to epochs 1 to 4. After the 
initial "shock", the network started to regain accuracy for 
epochs 3 and 4. The point of this experiment was to try to 
address the problem of insertions, i.e., words recognized in 
places where there was only background noise. As the 
probability of noise has been increased, the number of 
insertions dropped – from the initial number of 10000, to 
around 6000 after one epoch, and to between 4000 and 5000 
after the following epochs. Unfortunately, the number of 
deletions (words missed) and substitutions has been 
significantly raised as well, so the error rates rose too. 

For the second approach (Fig. 8 and 9), a mixture of clean 
speech and pure noise recordings was applied (see Sect. 
3D). The idea was to retain model variability and provide 
robustness in noisy conditions. Even though this 
experiment did not provide the desired results, the number 
of insertions has dropped slightly after the first epoch. 
Furthermore, in some cases in practice, for limited domains 
and smaller vocabularies, human subjects did report an 
increased accuracy and system stability. 

V. CONCLUSION 

Various transfer learning methods are employed in this 
paper in order to adapt more general acoustic models for 
domain-specific recognition, e.g. interactions with a voice 
assistant application on a smartphone. All of the methods 
provided improvements on the given domain in relation to 
the baseline model. However, this came with the cost of 
obtaining inferior results on other types of test utterances, 
which is expected. An additional approach presuming 
environmental (noise) adaptation is also examined in the 
paper. Although experimental results show an overall 
increase in error rates, a significant drop in the number of 
inserted words was achieved in some of the tests, showing 
that even this approach may have some practical uses. 
Future work includes experiments with other types of 
architectures and procedures for domain adaptation, as well 
as further optimization of the existing methods and 
specifically the environmental adaptation approach. 
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Fig. 6. Word error rate on clean speech and SNR 9 test set for the baseline model (EO) and epochs E1 to E4. 
 

Fig. 7. Word error rate on clean speech and SNR 13 test set for the baseline model (EO) and epochs E1 to E4. 
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Fig. 8. Word error rate on clean speech and SNR 9 test set for the baseline model (EO) and epochs E1 to E4. 

 

 
Fig. 9. Word error rate on clean speech and SNR 13 test set for the baseline model (EO) and epochs E1 to E4. 
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