
116 Telfor Journal, Vol. 12, No. 2, 2020.

Abstract — Data movement between the Convolutional

Neural Network (CNN) accelerators and off-chip memory is
critical concerning the overall power consumption.
Minimizing power consumption is particularly important for
low power embedded applications. Specific CNN computes
patterns offer a possibility of significant data reuse, leading to
the idea of using specialized on-chip cache memories which
enable a significant improvement in power consumption.
However, due to the unique caching pattern present within
CNNs, standard cache memories would not be efficient. In this
paper, a novel on-chip cache memory architecture, based on
the idea of input feature map striping, is proposed, which
requires significantly less on-chip memory resources
compared to previously proposed solutions. Experiment
results show that the proposed cache architecture can reduce
on-chip memory size by a factor of 16 or more, while
increasing power consumption no more than 15%, compared
to some of the previously proposed solutions.

Keywords — Cache memory, convolutional neural network,
energy-efficiency, low-power computing.

I. INTRODUCTION

TATE-OF-THE-ART convolution neural networks (CNNs)
are constructed from a large number of layers, in some

cases even more than a thousand [1], to reach ever-higher
accuracy. However, this comes at a price of increasing
computational load and memory bandwidth, which even
more importantly, increases power consumption. Increased
power consumption is a serious problem, especially when
CNNs are deployed in embedded applications, where
solutions with power consumption above 1W are rarely
acceptable. In order to solve these problems, many different
solutions have been proposed, including conventional
CPUs [2], GPUs [3], [4], ASICs [5], [6], and FPGAs. ASICs
are natural candidates for offering low power solutions, but

they usually lack flexibility in supporting the newest CNN
architectures. On the other hand, reconfigurable computing
platforms like FPGAs are providing both energy-efficiency
and flexibility at the same time. As a result, FPGAs have
become an attractive candidate for low-power CNNs
acceleration.

Most FPGA-based accelerators process CNNs layer by
layer[7]-[12], using single-layer data-flows, in which both
input and output feature maps are stored in the off-chip
memory due to their large size. Such an approach causes a
lot of data transfer between the CNN accelerator and the
off-chip memory. This problem is partially solved by the
solution proposed in [13]. In contrast with the solution
presented in [13], which focuses on minimizing data
transfer from off-chip memory during layer swapping, this
paper is concerned with minimizing data transfer during
single layer processing.

Our work was motivated by results presented in [14],
which show that significantly less power is consumed
during transfers from on-chip memory to CNN accelerator
(5pJ/access), compared to data transfers between CNN
accelerator and external memory (640pJ/access). During
the processing of a convolutional layer in particular, which
is the most time-consuming operation in CNNs, significant
reuse of input feature map data is possible by intelligent
caching, thus reducing power consumption.

This paper presents a new version of Input Feature Map
Cache, compared with previously published version in [15],
which significantly reduces the required size of cache
memory (with the reduction factor of 16 and more), with a
minimal increase in power consumption (a maximum
increase of no more than 15%).

The rest of this paper is organized as follows. In Section
II a basic idea about improved input feature map stick buffer
is presented. Details about the implementation of the new
version of the input stick buffer are described in Section III.
Finally, Section IV presents the results of experiments using
five standard CNNs architectures: MobileNet v1,
SqueezeNet, ResNet-18, ResNet-50, and Inception v3. The
conclusion is also given in Section IV.

II. INPUT FEATURE MAP STRIPING STICK BUFFER

Let us first introduce some definitions. Let the Input
Feature Map (IFM) be a 3D set of values making the input
volume of a CNN layer. Input to the first CNN layer is
usually not called an IFM, but rather an input instance.

A 3D region of KHꞏKWꞏKDIFM points, where KH, KW, and
KD are kernel height, width, and depth, respectively, from
the IFM that is directly connected to one neuron in the

Striping Input Feature Map Cache for Reducing
off-chip Memory Traffic in CNN Accelerators

Rastislav Struharik and Vuk Vranjkovic, Member, IEEE

S

Paper received May 05, 2020; revised November 10, 2020;
accepted November 17, 2020. Date of publication December 25, 2020.
The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Vujo Drndarević.

This paper is revised and expanded version of the paper presented

at the 27th Telecommunications Forum TELFOR 2019 [17].

This work is partially supported by the following grant:
„Innovativeelectronic components and systems based on inorganic and
organictechnologies embedded in consumer goods and products“, pr.
num.TR32016, Serbian Ministry of Education and Science.

Rastislav J.R.Struharik, University of Novi Sad, Faculty of
Technical Sciences, TrgDositeja Obradovića 6, 21000 Novi Sad
(phone +381-21-485-2537,email: rasti@uns.ac.rs.

Vuk Vranjkovic, University ofNovi Sad, Faculty of Technical
Sciences, Trg Dositeja Obradovića 6,21000 Novi Sad (email:
bykbpa@gmail.com).

Struharik and Vranjkovic: Striping Input Feature Map Cache for Reducing off-chip Memory Traffic in CNN Accelerators 117

current CNN layer will be designated as the IFM bundle.
A 3D region of 1ꞏ1ꞏKD points within the IFM bundle will

be called the IFM stick. Every IFM bundle is composed of
a number of IFM sticks. For example, a 3ꞏ3ꞏKDIFM bundle
is composed of 9 IFM sticks, each being a 3D region of
1ꞏ1ꞏKD points, as shown in Fig. 1.

7 8 9

4 5 6

1 2 3

KD 1x1xKD feature map stick

3x3xKD feature map bundle3

3
Fig. 1. Definitions of IFM stick and IFM bundle.

During the processing of convolutional and pooling
layers, IFM is traversed in such a way that there is a
significant overlap between adjacent IFM bundles, as
shown in Fig. 2. This happens because convolutional
kernels and pooling areas usually have horizontal and
vertical stride values that are smaller than the
kernel/pooling area size. This is illustrated in Fig. 2, where
IFM is traversed using a kernel of size 3x3, with horizontal
and vertical stride values of one.

Convolution 1 Convolution 2 Convolution 3

Fig. 2. IFM traversal using 3x3 convolutional kernel.

The left-most picture from Fig. 2 shows a region of IFM
which is used to compute Convolution 1. As the kernel is
shifted in the horizontal direction one IFM point to the right,
since the horizontal stride in this example is set to one, a
new IFM bundle is selected, which will be used to compute
Convolution 2, as shown in the middle picture from Fig. 2.
By comparing the IFM bundles that will be used to compute
Convolutions 1 and 2 we can observe that there is a
significant overlap between them, as indicated by the gray
IFM sticks in Fig. 2. Convolution 1 and 2 IFM bundles
share a total of six IFM sticks. As the convolutional kernel
is shifted for one additional position in the horizontal
direction, to select the IFM bundle that will be used in the
computation of Convolution 3, there is still a significant
overlap even with Convolution 1 IFM bundle (three IFM
sticks shown in dark gray color), and even larger overlap
with Convolution 2 IFM bundle (six IFM stick shown in
light and dark gray color).

This significant overlap between adjacent IFM bundles
offers an opportunity to optimize memory transfer between
CNN accelerator and off-chip memory, by using cache
memory. Instead of loading every IFM stick from a given
IFM bundle directly from the off-chip memory, previously
used IFM sticks can be stored locally, in the on-chip cache,
and loaded from there, thus saving power and possibly even
reducing latency of memory access.

There are many different ways how this IFM stick cache
can be designed. One possible design was proposed in [15].

In the case of the design proposed in [15] size of IFM stick
cache must be big enough to store KHꞏIFMWIFM sticks at
any time, where IFMW is the width of IFM of the current
layer, as shown in Fig. 3. a). Please notice that every IFM
stick is KD IFM points deep. Since sizes of kernels and IFMs
for different CNN layers usually vary, to support all these
IFMs, IFM stick cache size has to be selected in a way to
satisfy the following constraint

  , , , , ,
max

i j k i j i j kSize H W D
network

j layer
k kernel

ISB K IFM K




   (1)

From formula (1) it can be observed that the design of
IFM cache from [15] is not universal, in a sense that it
cannot support arbitrary sized IFMs and kernels, and even
supporting only a fraction of IFM or kernel sizes requires
large cache memories, which can be prohibitive in many
embedded applications.

In this paper, we propose a new organization of IFM stick
cache, based on the idea of IFM striping, which can support
arbitrarily sized IFMs while requiring significantly less on-
chip memory resources. The idea of IFM striping is
illustrated in Fig. 3. b).

When using IFM striping, the original IFM is partitioned
into a number of vertical IFM stripes. In this case, instead
of traversing the IFM as a whole, it is traversed one stripe
at a time. Because of this, IFM stick cache size can be made
smaller, since it must be able to store only KHꞏIFM_StripeW
IFM sticks at a time, where IFM_StripeW is the width of
individual IFM stripe.

Stripe 1
Stripe 2

Stripe 3

IFMW
IFM_StripeW

Border_Size

Stripe 4

a) b)
Fig. 3. (a) IFM stick cache from [15];

(b) IFM striping stick cache.

Dividing IFM into stripes provides an extra parameter,
width of the IFM stripe, IFM_StripeW, which can be used to
control the size of IFM stick cache memory. Theoretically,
when using IFM striping technique of traversing the IFM,
IFM stick cache can be made as small as the one needed to
store only one IFM bundle, corresponding to the largest 3D
kernel from the selected set of CNNs that should be
supported,

  , , , , , ,_ max
i j k i j k i j kMin Size H W D

i network
j layer
k kernel

ISB K K K




   (2)

Please notice that making IFM stick cache as small as
possible would not be recommended since in that case the
possibility to reuse IFM sticks would be lost and IFM stick
cache would become useless. Therefore, finding an optimal
size of the IFM stick cache is of great importance when
designing a CNN hardware accelerator. On one side IFM
stick cache should be made as small as possible, to save on-
chip memory resources. On the other side, as the IFM stick

118 Telfor Journal, Vol. 12, No. 2, 2020.

cache gets larger, there is more opportunity for IFM stick
reuse. This will reduce the required number of DRAM
memory accesses, reducing the power consumption, and
CNN processing time.

Please notice that using IFM striping requires repeated
re-loading of IFM sticks, located in the border region of
adjacent IFM stripes, from the main memory. In case when
IFM stick cache is large enough to satisfy equation (1) every
IFM stick is loaded from main memory exactly once. But,
in case of using IFM striping, all IFM sticks that lay in the
border region of adjacent IFM stripes will be loaded at least
twice. Size of the border region is determined by the size of
kernel horizontal stride value, SH, and kernel width, as the
following equation shows

 _Border Size W HStripe K S  (3)

As a consequence of this, increasing the number of IFM
stripes original IFM is divided into will increase the number
of IFM sticks that will have to be loaded multiple times
from the main memory, therefore increasing the power
consumption and possibly latency. However, as we will
show in Section IV, this power consumption increase is
fairly moderate compared with the decrease in memory size
required to build IFM stick cache, at least when standard
CNN networks are being considered.

III. IMPLEMENTATION OF IFM STICK BUFFER

IFM stick buffer is part of a larger module, called Input
Stream Manager (ISM), which is used to stream input data
to the actual Data Computing (DC) module, used to
compute numerical operations defined in various CNN
layer types, like convolution, pooling, etc. Please notice that
the proposed ISM module can be used together with many
different implementations of the DC module. For example,
the proposed ISM module has been successfully integrated
within the CoNNA CNN accelerator [16].

Input stream data usually consists of data computing
module configuration data, input image data or IFM data,
and convolutional kernel coefficient values or fully-
connected weight values, depending on the type of CNN
layer that is currently being processed. All CNN-related
data is received from external DRAM memory, which is
then either stored inside the IFM Stick Buffer (ISB) module,
in case of the input feature map data, or routed directly to
the appropriate compute modules inside the data computing
module, in the case of convolutional coefficients or fully-
connected weights data. Fig. 4. a) presents details about the
internal organization of the ISM module, with all major sub-
modules shown.

ISM module is composed of the following major
modules:

• IFM Stick Buffer (ISB) cache – used for storing
cached IFM sticks.

• Stick Valid (SV) memory – used to store
information is the current IFM stick, located at the
same position in the ISB memory, valid for reading
or not.

• Read Controller (RC) – used to read selected IFM
stick from the ISB cache and transfer it to the DC

module.
• Write Controller (WC) – used to write selected IFM

stick from external DRAM memory to appropriate
position inside the ISB cache.

• Input Stream Router (ISR) – used to select which
input data stream will be sent to the DC module.

Input
Stick
Buffer

Write Controller

Read Controller

External DRAM Memory

Data Computing Module

Stick
Valid

Memory

Input Stream Router
KD

IFM_StripeW

KH

IFM_StripeW

KH

a) b)

Input Stick Buffer

Stick Valid Memory
1

Fig. 4. a) Proposed ISM module;

b) Principle of operation.

The central module of the ISM is the IFM Stick Buffer
cache memory module. This cache memory is used for
storing selected IFM sticks from the input feature map,
which is being processed by the current CNN layer. As
explained in Section II, during IFM processing by
convolutional and pooling layers, IFM sticks are being
repeatedly reused during the calculation of adjacent
convolutions/pooling operations, as convolutional/pooling
kernels slide over the IFM. This opens a possibility to
minimize data movement between the CNN accelerator and
external memory by caching IFM sticks that will be reused
during adjacent convolutions/pooling calculation steps. ISB
module acts as this local on-chip cache of selected IFM
sticks. ISB stores selected IFM sticks, 1x1xKD sections of
the IFM, which will be used in the upcoming convolution
calculation operations, as shown in Fig. 4. b).

Each time the same IFM stick is needed in the current
convolution calculation operation, instead of re-fetching it
from external DRAM memory, it is fetched from the ISB
cache module, reducing the number of DRAM data
transfers, thus saving power. Once all convolution
operations involving a given IFM stick are computed, the
IFM stick can be removed from the ISB cache and the next
IFM stick can be loaded in its place from external DRAM
memory.

Read Controller and Write Controller modules are
charged with correct manipulation of IFM sticks stored
inside the ISB cache. WC module horizontally sweeps the
current IFM stripe, line by line, as shown in Fig. 5, and
writes IFM sticks into appropriate positions inside the ISB
cache module.

On the other hand, the RC module reads selected IFM
sticks from the ISB memory and transfers them to the DC
module. RC module reads IFM sticks in a different order
from the order that the WC module uses to write them in the
ISB cache. While WC traverses IFM stripe horizontally,
loading a complete line from IFM stripe before moving to
the next one, RC traverses ISB memory in a more localized
manner, which depends on the frontal shape of
convolutional/pooling kernel, as shown in Fig. 5 in the case

Struharik and Vranjkovic: Striping Input Feature Map Cache for Reducing off-chip Memory Traffic in CNN Accelerators 119

of a 3x3 kernel.

1

7

13

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

19

7

13

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

19

7

13

20

8

14

3

9

15

4

10

16

5

11

17

6

12

18

19

7

13

20

8

14

21

9

15

4

10

16

5

11

17

6

12

18

1

7

13

2

8

14

3

9

15

2

8

14

3

9

15

4

10

16

3

9

15

4

10

16

5

11

17

4

10

16

5

11

17

6

12

18

19

7

13

20

8

14

21

9

15

22

10

16

23

11

17

24

12

18

7

13

8

14

9

15

19 20 21

19

25

13

20

8

14

21

9

15

22

10

16

23

11

17

24

12

18

20

8

14

21

9

15

22

10

16

...

...

...

...

19

25

31

20

26

32

21

27

33

22

28

34

23

29

35

24

30

36

...

...

...

...

...

...

...

...

...

...

...

..................

..................

1

7

13

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

...

ISB ISB ISB

ISBISBISB

to
DC

to
DC

to
DC

to
DC

to
DC

to
DC

Input Feature
Map Stripe

Fig. 5. Process of traversing IFM stripe.

Since the speed at which WC module writes IFM sticks
into the ISB cache can differ from the speed at which the
RC module reads IFM sticks from the ISB cache because
data processing throughputs of the memory subsystem and
DC module can be different, a mechanism that ensures
consistency of ISB cache content needs to be devised. This
is the purpose of the Stick Valid memory module.

SV memory is IFMWꞏKHꞏ1 bits large, as shown in
Fig. 4. b). For each IFM stick from the ISB cache there is a
corresponding bit in the SV memory, indicating is that
particular IFM stick valid for reading or not. Each time WC
module needs to write a new IFM stick into a selected
location inside the ISB cache, it first checks is the
corresponding bit from the SV memory cleared, which
indicates that all convolutions that use the current IFM stick
stored at the selected location inside the ISB cache have
been computed, meaning that it can be replaced with the
new IFM stick. If this is the case, WC writes a new IFM
stick in the selected location inside the ISB cache and sets
the corresponding bit inside SV memory. This situation is
shown in Fig. 5, where dark gray boxes represent IFM
sticks that have been replaced during the IFM processing.
Otherwise, the WC module waits until the corresponding bit
in SV memory is cleared.

When the RC module wants to read the IFM stick from
the ISB cache, it first checks is the selected IFM stick valid
for reading or not, by checking the corresponding bit from
the SV memory. If the bit is set, this means that the selected
IFM stick data is valid and the RC module can transfer it to
the DC module, otherwise the RC module has to wait until
the WC module certifies that particular IFM stick data is
valid.

The operation of the ISB cache is shown in Fig. 5, which
shows a segment of IFM stripe, 6x6 IFM sticks in size. If
we assume that this IFM stripe is being processed by a 3x3
kernel with horizontal and vertical strides of one, then each
IFM stick will be used in the process of calculating of up to
nine different convolutions. Please notice that IFM sticks
located at borders of the IFM stripe will be used in a smaller
number of convolution computation operations. For
example, IFM stick no. 1 will be used in only one
convolution computation operation, IFM stick no. 2 will be
used in two convolution computation operations, IFM
sticks no. 3 and 4 in three convolution computation
operations, and so on.

Without ISB cache, each IFM stick would have to be

loaded from DRAM memory up to nine times, but by using
ISB cache it is only necessary to load each IFM stick only
once, or twice if it lies in the border zone as shown in
Fig. 3. b), from external DRAM. Fig. 5 also shows the
concept of replacing already used IFM sticks within the ISB
module with the new ones. New IFM sticks that are being
written in the ISB cache by the WC module are shown in
dark grey color in Fig. 5.

IV. EXPERIMENTS

In order to investigate how the amount of total DRAM
data transfer size depends on the size of Input Stick Buffer
cache, experiments using five popular deep CNNs,
MobileNet v1, SqueezeNet, ResNet-18, ResNet-50, and
Inception v3, have been performed. As noted earlier, the
DRAM data movement represents a major part of the total
power consumption when processing CNN networks, [14].
Experiments were performed by simulating the RTL model
of the ISB cache, while processing different CNNs and
measuring the number of DRAM memory accesses under
different sizes of ISB cache, using Xilinx Vivado simulator.

TABLE 1: TOTAL DRAM MEMORY ACCESSES.

ISB

SIZE

Number of DRAM memory accesses
MobileNet

V1
Inception

V3
ResNet

18
ResNet

50
SqueezeNet

131072 3618340 12284677 4686905 14272064 2146998
65536 3618340 12284677 4708409 14272064 2146998
32768 3618340 12317461 4837433 14272064 2153974
16384 3654180 12424797 5140265 14273840 2169734
8192 3724069 12905239 5153945 14367904 2199510
4096 3924772 13392870 5178820 14596560 2265692
2048 4070148 14224984 5250042 14996496 2359824

Table 1 shows, how the size of ISB cache, expressed as

the number of IFM points, affects the required number of
memory accesses to the DRAM memory. The current
implementation of IFM stick cache uses a 64-bit AXI-Full
interface for accessing DRAM, so every access transfers
64-bits. Every IFM point is represented with 16-bits, so
during each memory access, four IFM points are being
transferred.

Figs. 6-10 show the relative increase in total DRAM read
access numbers compared to a scenario where every IFM
from selected CNN is traversed using only one stripe, which
corresponds with the ISB cache design presented in [15],
for every CNN network used in the experiments.

Fig. 6. The relative increase of DRAM memory accesses

vs ISB cache size, in case of MobileNet v1 CNN.

0.9

0.95

1

1.05

1.1

1.15

2048 4096 8192 16384 32768 65536 131072

Mobilenet v1

120 Telfor Journal, Vol. 12, No. 2, 2020.

In the case of MobileNet v1, we can observe that even
when ISB cache size is reduced by a factor of 16, to a size
of 2048 IFM points, a relative DRAM data movement
increase is only 12.49%. As we increase the size of the ISB
cache, the relative DRAM data movement quickly
decreases to values that are below 5%, as shown in Fig. 6.

Fig. 7. The relative increase of DRAM memory accesses

vs ISB cache size, in case of Inception v3 CNN.

For the Inception v3, the relative increase in the DRAM
data movement overhead is slightly higher. For the ISB
cache size of 2048 IFM points it reaches a value of 15.79%,
but please notice that in this case, ISB cache size is reduced
32 times, compared with the reference configuration.
Similar to the MobileNet v1 CNN, as we increase the size
of ISB cache, the relative increase in the DRAM overhead
decreases sharply to values that are below 5%, as shown in
Fig. 7.

Fig. 8. The relative increase of DRAM memory accesses

vs ISB cache size, in case of ResNet-18 CNN.

For ResNet-18 CNN, the situation is similar as with the
MobileNet v1 CNN. For the ISB cache size of 2048 IFM
points, there is the highest relative increase in the DRAM
data movement, of 12.01%. Similarly to all CNN networks
that have been used in the experiments, as the size of ISB
cache is increased, there is a sharp decrease in the relative
DRAM access overhead, to a value that is below 5%, as
shown in Fig. 8.

Interestingly, for ResNet-50 CNN, the maximum relative
DRAM access overhead increase is significantly smaller,
compared with all other used CNN networks and even with
the ResNet-18 CNN which belongs to the same family. The
maximum relative DRAM access overhead increase for
ResNet-50 CNN is only a 5.08% increase when ISB cache
is 2048 IFM points large. In the case of ResNet-50, as the

size of the ISB cache is an increase, the relative DRAM
access overhead quickly falls below 2%, as shown in Fig. 9.

Fig. 9. The relative increase of DRAM memory accesses

vs ISB cache size, in case of ResNet-50 CNN.

Finally, in the case of SqueezeNet CNN, the largest
DRAM data movement increase is 9.91%, when ISB cache
size is 2048 IFM points large. The trend of quick reduction
in relative DRAM access overhead when ISB cache size is
increased is visible for SqueezeNet CNN also, as can be
observed in Fig. 10.

Fig. 10. The relative increase of DRAM memory accesses

vs ISB cache size, in case of SqueezeNet CNN.

Based on the results of performed experiments, it can be
observed that using IFM striping technique on-chip cache
memory for storing IFM points can be reduced from 16 to
32 times, compared to some of the previously proposed
solutions [15], while at the same time increasing power
consumption due to the additional DRAM data movement
by no more than 15%, for all CNN networks that were used
in the experiments.

Table 2 presents the implementation results for the ISM
module, shown in Fig. 4, for various sizes of ISB cache,
ranging from 2048 IFM points to 131072 IFM points. These
results we obtained after performing synthesis and
implementation steps using Xilinx Vivado 2018.3 software
tool using default tool settings.

As can be seen from Table 2, all instances of the ISM
module require very little hardware resources, when LUTs
and DSPs are concerned. The situation is different when
BRAM usage is concerned, where a significant increase can
be observed as the size of the ISB cache is increased.

0.9

0.95

1

1.05

1.1

1.15

1.2

2048 4096 8192 16384 32768 65536 131072

Inception

0.9

0.95

1

1.05

1.1

1.15

2048 4096 8192 16384 32768 65536 131072

Resnet ‐ 18

0.96

0.98

1

1.02

1.04

1.06

2048 4096 8192 16384 32768 65536 131072

Resnet ‐ 50

0.95

1

1.05

1.1

1.15

2048 4096 8192 16384 32768 65536 131072

Squeezenet

Struharik and Vranjkovic: Striping Input Feature Map Cache for Reducing off-chip Memory Traffic in CNN Accelerators 121

TABLE 2: UTILIZATION.

ISB SIZE BRAM LUT DSP

131072 64 1275 13

65536 35 1186 13

32768 21 1133 13

16384 14 1067 13

8192 10.5 1050 13

4096 8.5 1023 13

2048 7.5 1017 13

When BRAM resources are concerned, from Table 2 it

can be observed that there is an almost exponential increase
in required BRAMs to implement the ISM module as the
ISB cache size is increased. This observation was the main
motivation for developing an ISM module with the “IFM
striping” capability.

From Table 2 it can be seen that there is no increase in
required DSP blocks as the size of ISB cache is enlarged
from 2048 to 131072 IFM points. This was expected, since
DSP blocks are not used to build ISB cache, so their number
should remain constant.

Finally, from Table 2, it can be seen that there is an
increase in required LUT number as the size of ISB cache
increases. However, the maximum LUT increase is no more
than 25%, compared to the situation when the ISB cache
size is 2048 IFM points.

The implementation of the ISB cache reduces latency
access to memory. For hardware experiments, we used the
Xilinx ZCU102 development board. On the board, the ISM
implementation can work on 245 Mhz frequency. For that
frequency, the latency from the ISM to the DDR memory is
at least 34 cycles, and latency to the ISB cache is one cycle.
Each time that the ISM access the data inside ISB, the
latency is reduced from 34 cycles to 1.

The latency needed at the beginning of classification for
filling of ISB cache is negligible for the large IFMs. Only
one stick is required for the start of calculation, so the
average time for memory access approaches one cycle.

REFERENCES

[1] Kaiming He, Xiangyu Zhang, ShaoqingRen, and Jian Sun. 2011.
Deep Residual Learning for Image Recognition. In the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[2] A. Rodriguez, “Intel Processors for Deep Learning Training”,
November 2017. [Online]. Available: https://software.intel.com/en-
us/articles/intel-processors-for-deep-learning-training

[3] D. Franklin, “NVIDIA Jetson TX2 Delivers Twice the Intelligence
tothe Edge,” march 2017. [Online]. Available:
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-
intelligence-edge/

[4] A. Frumusanu, “The Samsung Galaxy S9 and S9+ Review: Exynos
and Snapdragon at 960fps,” March 2018. [Online]. Available:
https://www.anandtech.com/show/12520/the-galaxy-s9-review

[5] “Edge TPU,” 2019. [Online]. Available:
https://cloud.google.com/edge-tpu/

[6] J. Hruska, “New Movidius Myriad X VPU Packs a Custom
NeuralCompute Engine,” August 2017. [Online]. Available:
https://www.extremetech.com/computing/254772-new-movidius-
myriad-x-vpu-packs-custom-neural-compute-engine

[7] Y. Shen, M. Ferdman, and P. Milder. 2017. Maximizing CNN
Accelerator Efficiency Through Resource Partitioning. In
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA ’17).

[8] E. Nurvitadhi, G.Venkatesh, J.Sim, D. Marr, R. Huang, J. G. H.Ong,
Y.T.Liew, K.Srivatsan, D. Moss, S.Subhaschandra, and G.
Boudoukh, Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?. In Proceedings of the 25th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(FPGA ’17), 2017.

[9] Y.Shen, M.Ferdman, and P. Milder, Escher: A CNN Accelerator
with Flexible Buffering to Minimize Off-Chip Transfer. In
Proceedings of the 25th IEEE International Symposium on Field-
Programmable Custom Computing Machines(FCCM ’17), 2017.

[10] J.Qiu, J. Wang, S. Yao, K.Guo, B. Li, E. Zhou, J. Yu, T. Tang, N.Xu,
S. Song, Y. Wang, and H. Yang, Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings
of the24thACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’16), 2016.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 23rd ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’15), 2015.

[12] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. L, C-brain: A
Deep Learning Accelerator That Tames the Diversity of CNNs
Through Adaptive Data-level Parallelization. In Proceedings of the
53rd Annual Design Automation Conference (DAC’16), 2016.

[13] A.Azizimazreah,C. Lizhong, "Flexible On-chipMemory
Architecture for DCNN Accelerators.", The First International
Workshop on Architectures for Intelligent Machines (AIM 2017)

[14] M. Horowitz. Energy table for 45nm process, Stanford VLSI wiki.
[Online]. Available:https://sites.google.com/site/seecproject

[15] D. Rakanovic, A.Erdeljan, V. Vranjkovic, B. Vukobratovic, P.
Teodorovic, and R. Struharik, Reducing off-chip memory traffic in
deep CNNs using stick buffer cache, In Proceedings of the 25th
Telecommunication Forum (TELFOR), 2017.

[16] R. Struharik, B. Vukobratović, A. Erdeljan, and D. Rakanović,
“CoNNA – Hardware accelerator for compressed convolutional
neural networks”, Microprocessors and Microsystems, vol. 73,
March 2020, 102991.

[17] R. Struharik and V. Vranjkovic, "Stick Buffer Cache v2: Improved
Input Feature Map Cache for Reducing off-chip Memory Traffic in
CNN Accelerators," 2019 27th Telecommunications Forum
(TELFOR), Belgrade, Serbia, 2019, pp. 1-4.

