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Abstract — Data movement between the Convolutional 

Neural Network (CNN) accelerators and off-chip memory is 
critical concerning the overall power consumption. 
Minimizing power consumption is particularly important for 
low power embedded applications. Specific CNN computes 
patterns offer a possibility of significant data reuse, leading to 
the idea of using specialized on-chip cache memories which 
enable a significant improvement in power consumption. 
However, due to the unique caching pattern present within 
CNNs, standard cache memories would not be efficient. In this 
paper, a novel on-chip cache memory architecture, based on 
the idea of input feature map striping, is proposed, which 
requires significantly less on-chip memory resources 
compared to previously proposed solutions. Experiment 
results show that the proposed cache architecture can reduce 
on-chip memory size by a factor of 16 or more, while 
increasing power consumption no more than 15%, compared 
to some of the previously proposed solutions. 

Keywords — Cache memory, convolutional neural network, 
energy-efficiency, low-power computing. 

I. INTRODUCTION 

TATE-OF-THE-ART convolution neural networks (CNNs) 
are constructed from a large number of layers, in some 

cases even more than a thousand [1], to reach ever-higher 
accuracy. However, this comes at a price of increasing 
computational load and memory bandwidth, which even 
more importantly, increases power consumption. Increased 
power consumption is a serious problem, especially when 
CNNs are deployed in embedded applications, where 
solutions with power consumption above 1W are rarely 
acceptable. In order to solve these problems, many different 
solutions have been proposed, including conventional 
CPUs [2], GPUs [3], [4], ASICs [5], [6], and FPGAs. ASICs 
are natural candidates for offering low power solutions, but 

they usually lack flexibility in supporting the newest CNN 
architectures. On the other hand, reconfigurable computing 
platforms like FPGAs are providing both energy-efficiency 
and flexibility at the same time. As a result, FPGAs have 
become an attractive candidate for low-power CNNs 
acceleration. 

Most FPGA-based accelerators process CNNs layer by 
layer[7]-[12], using single-layer data-flows, in which both 
input and output feature maps are stored in the off-chip 
memory due to their large size. Such an approach causes a 
lot of data transfer between the CNN accelerator and the 
off-chip memory. This problem is partially solved by the 
solution proposed in [13]. In contrast with the solution 
presented in [13], which focuses on minimizing data 
transfer from off-chip memory during layer swapping, this 
paper is concerned with minimizing data transfer during 
single layer processing.  

Our work was motivated by results presented in [14], 
which show that significantly less power is consumed 
during transfers from on-chip memory to CNN accelerator 
(5pJ/access), compared to data transfers between CNN 
accelerator and external memory (640pJ/access). During 
the processing of a convolutional layer in particular, which 
is the most time-consuming operation in CNNs, significant 
reuse of input feature map data is possible by intelligent 
caching, thus reducing power consumption.  

This paper presents a new version of Input Feature Map 
Cache, compared with previously published version in [15], 
which significantly reduces the required size of cache 
memory (with the reduction factor of 16 and more), with a 
minimal increase in power consumption (a maximum 
increase of no more than 15%). 

The rest of this paper is organized as follows. In Section 
II a basic idea about improved input feature map stick buffer 
is presented. Details about the implementation of the new 
version of the input stick buffer are described in Section III. 
Finally, Section IV presents the results of experiments using 
five standard CNNs architectures: MobileNet v1, 
SqueezeNet, ResNet-18, ResNet-50, and Inception v3. The 
conclusion is also given in Section IV. 

II. INPUT FEATURE MAP STRIPING STICK BUFFER 

Let us first introduce some definitions. Let the Input 
Feature Map (IFM) be a 3D set of values making the input 
volume of a CNN layer. Input to the first CNN layer is 
usually not called an IFM, but rather an input instance.  

A 3D region of KHꞏKWꞏKDIFM points, where KH, KW, and 
KD are kernel height, width, and depth, respectively, from 
the IFM that is directly connected to one neuron in the 
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current CNN layer will be designated as the IFM bundle. 
A 3D region of 1ꞏ1ꞏKD points within the IFM bundle will 

be called the IFM stick. Every IFM bundle is composed of 
a number of IFM sticks. For example, a 3ꞏ3ꞏKDIFM bundle 
is composed of 9 IFM sticks, each being a 3D region of 
1ꞏ1ꞏKD points, as shown in Fig. 1. 

7 8 9

4 5 6

1 2 3

KD 1x1xKD feature map stick

3x3xKD feature map bundle3

3  
Fig. 1. Definitions of IFM stick and IFM bundle. 

During the processing of convolutional and pooling 
layers, IFM is traversed in such a way that there is a 
significant overlap between adjacent IFM bundles, as 
shown in Fig. 2. This happens because convolutional 
kernels and pooling areas usually have horizontal and 
vertical stride values that are smaller than the 
kernel/pooling area size. This is illustrated in Fig. 2, where 
IFM is traversed using a kernel of size 3x3, with horizontal 
and vertical stride values of one.  

Convolution 1 Convolution 2 Convolution 3

 
Fig. 2. IFM traversal using 3x3 convolutional kernel. 

The left-most picture from Fig. 2 shows a region of IFM 
which is used to compute Convolution 1. As the kernel is 
shifted in the horizontal direction one IFM point to the right, 
since the horizontal stride in this example is set to one, a 
new IFM bundle is selected, which will be used to compute 
Convolution 2, as shown in the middle picture from Fig. 2. 
By comparing the IFM bundles that will be used to compute 
Convolutions 1 and 2 we can observe that there is a 
significant overlap between them, as indicated by the gray 
IFM sticks in Fig. 2. Convolution 1 and 2 IFM bundles 
share a total of six IFM sticks. As the convolutional kernel 
is shifted for one additional position in the horizontal 
direction, to select the IFM bundle that will be used in the 
computation of Convolution 3, there is still a significant 
overlap even with Convolution 1 IFM bundle (three IFM 
sticks shown in dark gray color), and even larger overlap 
with Convolution 2 IFM bundle (six IFM stick shown in 
light and dark gray color).  

This significant overlap between adjacent IFM bundles 
offers an opportunity to optimize memory transfer between 
CNN accelerator and off-chip memory, by using cache 
memory. Instead of loading every IFM stick from a given 
IFM bundle directly from the off-chip memory, previously 
used IFM sticks can be stored locally, in the on-chip cache, 
and loaded from there, thus saving power and possibly even 
reducing latency of memory access.  

There are many different ways how this IFM stick cache 
can be designed. One possible design was proposed in [15]. 

In the case of the design proposed in [15] size of IFM stick 
cache must be big enough to store KHꞏIFMWIFM sticks at 
any time, where IFMW is the width of IFM of the current 
layer, as shown in Fig. 3. a). Please notice that every IFM 
stick is KD IFM points deep. Since sizes of kernels and IFMs 
for different CNN layers usually vary, to support all these 
IFMs, IFM stick cache size has to be selected in a way to 
satisfy the following constraint 

  , , , , ,
max

i j k i j i j kSize H W D
network

j layer
k kernel

ISB K IFM K




    (1) 

From formula (1) it can be observed that the design of 
IFM cache from [15] is not universal, in a sense that it 
cannot support arbitrary sized IFMs and kernels, and even 
supporting only a fraction of IFM or kernel sizes requires 
large cache memories, which can be prohibitive in many 
embedded applications.  

In this paper, we propose a new organization of IFM stick 
cache, based on the idea of IFM striping, which can support 
arbitrarily sized IFMs while requiring significantly less on-
chip memory resources. The idea of IFM striping is 
illustrated in Fig. 3. b). 

When using IFM striping, the original IFM is partitioned 
into a number of vertical IFM stripes. In this case, instead 
of traversing the IFM as a whole, it is traversed one stripe 
at a time. Because of this, IFM stick cache size can be made 
smaller, since it must be able to store only KHꞏIFM_StripeW 
IFM sticks at a time, where IFM_StripeW is the width of 
individual IFM stripe. 

Stripe 1
Stripe 2

Stripe 3

IFMW
IFM_StripeW

Border_Size

Stripe 4

a) b)  
Fig. 3. (a) IFM stick cache from [15]; 

(b) IFM striping stick cache. 

Dividing IFM into stripes provides an extra parameter, 
width of the IFM stripe, IFM_StripeW, which can be used to 
control the size of IFM stick cache memory. Theoretically, 
when using IFM striping technique of traversing the IFM, 
IFM stick cache can be made as small as the one needed to 
store only one IFM bundle, corresponding to the largest 3D 
kernel from the selected set of CNNs that should be 
supported, 

  , , , , , ,_ max
i j k i j k i j kMin Size H W D

i network
j layer
k kernel

ISB K K K




    (2) 

Please notice that making IFM stick cache as small as 
possible would not be recommended since in that case the 
possibility to reuse IFM sticks would be lost and IFM stick 
cache would become useless. Therefore, finding an optimal 
size of the IFM stick cache is of great importance when 
designing a CNN hardware accelerator. On one side IFM 
stick cache should be made as small as possible, to save on-
chip memory resources. On the other side, as the IFM stick 
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cache gets larger, there is more opportunity for IFM stick 
reuse. This will reduce the required number of DRAM 
memory accesses, reducing the power consumption, and 
CNN processing time.  

Please notice that using IFM striping requires repeated 
re-loading of IFM sticks, located in the border region of 
adjacent IFM stripes, from the main memory. In case when 
IFM stick cache is large enough to satisfy equation (1) every 
IFM stick is loaded from main memory exactly once. But, 
in case of using IFM striping, all IFM sticks that lay in the 
border region of adjacent IFM stripes will be loaded at least 
twice. Size of the border region is determined by the size of 
kernel horizontal stride value, SH, and kernel width, as the 
following equation shows 

 _Border Size W HStripe K S   (3) 

As a consequence of this, increasing the number of IFM 
stripes original IFM is divided into will increase the number 
of IFM sticks that will have to be loaded multiple times 
from the main memory, therefore increasing the power 
consumption and possibly latency. However, as we will 
show in Section IV, this power consumption increase is 
fairly moderate compared with the decrease in memory size 
required to build IFM stick cache, at least when standard 
CNN networks are being considered.  

III. IMPLEMENTATION OF IFM STICK BUFFER 

IFM stick buffer is part of a larger module, called Input 
Stream Manager (ISM), which is used to stream input data 
to the actual Data Computing (DC) module, used to 
compute numerical operations defined in various CNN 
layer types, like convolution, pooling, etc. Please notice that 
the proposed ISM module can be used together with many 
different implementations of the DC module. For example, 
the proposed ISM module has been successfully integrated 
within the CoNNA CNN accelerator [16].  

Input stream data usually consists of data computing 
module configuration data, input image data or IFM data, 
and convolutional kernel coefficient values or fully-
connected weight values, depending on the type of CNN 
layer that is currently being processed. All CNN-related 
data is received from external DRAM memory, which is 
then either stored inside the IFM Stick Buffer (ISB) module, 
in case of the input feature map data, or routed directly to 
the appropriate compute modules inside the data computing 
module, in the case of convolutional coefficients or fully-
connected weights data. Fig. 4. a) presents details about the 
internal organization of the ISM module, with all major sub-
modules shown. 

ISM module is composed of the following major 
modules: 

• IFM Stick Buffer (ISB) cache – used for storing 
cached IFM sticks.  

• Stick Valid (SV) memory – used to store 
information is the current IFM stick, located at the 
same position in the ISB memory, valid for reading 
or not. 

• Read Controller (RC) – used to read selected IFM 
stick from the ISB cache and transfer it to the DC 

module. 
• Write Controller (WC) – used to write selected IFM 

stick from external DRAM memory to appropriate 
position inside the ISB cache. 

• Input Stream Router (ISR) – used to select which 
input data stream will be sent to the DC module.  

Input 
Stick 
Buffer

Write Controller

Read Controller

External DRAM Memory

Data Computing Module

Stick 
Valid 

Memory

Input Stream Router
KD

IFM_StripeW

KH

IFM_StripeW

KH

a) b)

Input Stick Buffer

Stick Valid Memory
1

 
Fig. 4. a) Proposed ISM module; 

b) Principle of operation. 

The central module of the ISM is the IFM Stick Buffer 
cache memory module. This cache memory is used for 
storing selected IFM sticks from the input feature map, 
which is being processed by the current CNN layer. As 
explained in Section II, during IFM processing by 
convolutional and pooling layers, IFM sticks are being 
repeatedly reused during the calculation of adjacent 
convolutions/pooling operations, as convolutional/pooling 
kernels slide over the IFM. This opens a possibility to 
minimize data movement between the CNN accelerator and 
external memory by caching IFM sticks that will be reused 
during adjacent convolutions/pooling calculation steps. ISB 
module acts as this local on-chip cache of selected IFM 
sticks. ISB stores selected IFM sticks, 1x1xKD sections of 
the IFM, which will be used in the upcoming convolution 
calculation operations, as shown in Fig. 4. b).  

Each time the same IFM stick is needed in the current 
convolution calculation operation, instead of re-fetching it 
from external DRAM memory, it is fetched from the ISB 
cache module, reducing the number of DRAM data 
transfers, thus saving power. Once all convolution 
operations involving a given IFM stick are computed, the 
IFM stick can be removed from the ISB cache and the next 
IFM stick can be loaded in its place from external DRAM 
memory.  

Read Controller and Write Controller modules are 
charged with correct manipulation of IFM sticks stored 
inside the ISB cache. WC module horizontally sweeps the 
current IFM stripe, line by line, as shown in Fig. 5, and 
writes IFM sticks into appropriate positions inside the ISB 
cache module.  

On the other hand, the RC module reads selected IFM 
sticks from the ISB memory and transfers them to the DC 
module. RC module reads IFM sticks in a different order 
from the order that the WC module uses to write them in the 
ISB cache. While WC traverses IFM stripe horizontally, 
loading a complete line from IFM stripe before moving to 
the next one, RC traverses ISB memory in a more localized 
manner, which depends on the frontal shape of 
convolutional/pooling kernel, as shown in Fig. 5 in the case 



Struharik and Vranjkovic: Striping Input Feature Map Cache for Reducing off-chip Memory Traffic in CNN Accelerators 119 

of a 3x3 kernel. 
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Fig. 5. Process of traversing IFM stripe. 

Since the speed at which WC module writes IFM sticks 
into the ISB cache can differ from the speed at which the 
RC module reads IFM sticks from the ISB cache because 
data processing throughputs of the memory subsystem and 
DC module can be different, a mechanism that ensures 
consistency of ISB cache content needs to be devised. This 
is the purpose of the Stick Valid memory module.  

SV memory is IFMWꞏKHꞏ1 bits large, as shown in 
Fig. 4. b). For each IFM stick from the ISB cache there is a 
corresponding bit in the SV memory, indicating is that 
particular IFM stick valid for reading or not. Each time WC 
module needs to write a new IFM stick into a selected 
location inside the ISB cache, it first checks is the 
corresponding bit from the SV memory cleared, which 
indicates that all convolutions that use the current IFM stick 
stored at the selected location inside the ISB cache have 
been computed, meaning that it can be replaced with the 
new IFM stick. If this is the case, WC writes a new IFM 
stick in the selected location inside the ISB cache and sets 
the corresponding bit inside SV memory. This situation is 
shown in Fig. 5, where dark gray boxes represent IFM 
sticks that have been replaced during the IFM processing. 
Otherwise, the WC module waits until the corresponding bit 
in SV memory is cleared.  

When the RC module wants to read the IFM stick from 
the ISB cache, it first checks is the selected IFM stick valid 
for reading or not, by checking the corresponding bit from 
the SV memory. If the bit is set, this means that the selected 
IFM stick data is valid and the RC module can transfer it to 
the DC module, otherwise the RC module has to wait until 
the WC module certifies that particular IFM stick data is 
valid. 

The operation of the ISB cache is shown in Fig. 5, which 
shows a segment of IFM stripe, 6x6 IFM sticks in size. If 
we assume that this IFM stripe is being processed by a 3x3 
kernel with horizontal and vertical strides of one, then each 
IFM stick will be used in the process of calculating of up to 
nine different convolutions. Please notice that IFM sticks 
located at borders of the IFM stripe will be used in a smaller 
number of convolution computation operations. For 
example, IFM stick no. 1 will be used in only one 
convolution computation operation, IFM stick no. 2 will be 
used in two convolution computation operations, IFM 
sticks no. 3 and 4 in three convolution computation 
operations, and so on.  

Without ISB cache, each IFM stick would have to be 

loaded from DRAM memory up to nine times, but by using 
ISB cache it is only necessary to load each IFM stick only 
once, or twice if it lies in the border zone as shown in 
Fig. 3. b), from external DRAM. Fig. 5 also shows the 
concept of replacing already used IFM sticks within the ISB 
module with the new ones. New IFM sticks that are being 
written in the ISB cache by the WC module are shown in 
dark grey color in Fig. 5. 

IV. EXPERIMENTS 

In order to investigate how the amount of total DRAM 
data transfer size depends on the size of Input Stick Buffer 
cache, experiments using five popular deep CNNs, 
MobileNet v1, SqueezeNet, ResNet-18, ResNet-50, and 
Inception v3, have been performed. As noted earlier, the 
DRAM data movement represents a major part of the total 
power consumption when processing CNN networks, [14]. 
Experiments were performed by simulating the RTL model 
of the ISB cache, while processing different CNNs and 
measuring the number of DRAM memory accesses under 
different sizes of ISB cache, using Xilinx Vivado simulator. 

TABLE 1: TOTAL DRAM MEMORY ACCESSES. 

ISB 

SIZE 

Number of DRAM memory accesses
MobileNet 

V1
Inception 

V3
ResNet 

18 
ResNet 

50 
SqueezeNet 

131072 3618340 12284677 4686905 14272064 2146998
65536 3618340 12284677 4708409 14272064 2146998
32768 3618340 12317461 4837433 14272064 2153974
16384 3654180 12424797 5140265 14273840 2169734
8192 3724069 12905239 5153945 14367904 2199510
4096 3924772 13392870 5178820 14596560 2265692
2048 4070148 14224984 5250042 14996496 2359824

 
Table 1 shows, how the size of ISB cache, expressed as 

the number of IFM points, affects the required number of 
memory accesses to the DRAM memory. The current 
implementation of IFM stick cache uses a 64-bit AXI-Full 
interface for accessing DRAM, so every access transfers 
64-bits. Every IFM point is represented with 16-bits, so 
during each memory access, four IFM points are being 
transferred. 

Figs. 6-10 show the relative increase in total DRAM read 
access numbers compared to a scenario where every IFM 
from selected CNN is traversed using only one stripe, which 
corresponds with the ISB cache design presented in [15], 
for every CNN network used in the experiments.  

 
Fig. 6. The relative increase of DRAM memory accesses 

vs ISB cache size, in case of MobileNet v1 CNN. 
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In the case of MobileNet v1, we can observe that even 
when ISB cache size is reduced by a factor of 16, to a size 
of 2048 IFM points, a relative DRAM data movement 
increase is only 12.49%. As we increase the size of the ISB 
cache, the relative DRAM data movement quickly 
decreases to values that are below 5%, as shown in Fig. 6. 

 
Fig. 7. The relative increase of DRAM memory accesses 

vs ISB cache size, in case of Inception v3 CNN. 

For the Inception v3, the relative increase in the DRAM 
data movement overhead is slightly higher. For the ISB 
cache size of 2048 IFM points it reaches a value of 15.79%, 
but please notice that in this case, ISB cache size is reduced 
32 times, compared with the reference configuration. 
Similar to the MobileNet v1 CNN, as we increase the size 
of ISB cache, the relative increase in the DRAM overhead 
decreases sharply to values that are below 5%, as shown in 
Fig. 7. 

 
Fig. 8. The relative increase of DRAM memory accesses 

vs ISB cache size, in case of ResNet-18 CNN. 

For ResNet-18 CNN, the situation is similar as with the 
MobileNet v1 CNN. For the ISB cache size of 2048 IFM 
points, there is the highest relative increase in the DRAM 
data movement, of 12.01%. Similarly to all CNN networks 
that have been used in the experiments, as the size of ISB 
cache is increased, there is a sharp decrease in the relative 
DRAM access overhead, to a value that is below 5%, as 
shown in Fig. 8. 

Interestingly, for ResNet-50 CNN, the maximum relative 
DRAM access overhead increase is significantly smaller, 
compared with all other used CNN networks and even with 
the ResNet-18 CNN which belongs to the same family. The 
maximum relative DRAM access overhead increase for 
ResNet-50 CNN is only a 5.08% increase when ISB cache 
is 2048 IFM points large. In the case of ResNet-50, as the 

size of the ISB cache is an increase, the relative DRAM 
access overhead quickly falls below 2%, as shown in Fig. 9.  

 
Fig. 9. The relative increase of DRAM memory accesses 

vs ISB cache size, in case of ResNet-50 CNN. 

Finally, in the case of SqueezeNet CNN, the largest 
DRAM data movement increase is 9.91%, when ISB cache 
size is 2048 IFM points large. The trend of quick reduction 
in relative DRAM access overhead when ISB cache size is 
increased is visible for SqueezeNet CNN also, as can be 
observed in Fig. 10. 

 
Fig. 10. The relative increase of DRAM memory accesses 

vs ISB cache size, in case of SqueezeNet CNN. 

Based on the results of performed experiments, it can be 
observed that using IFM striping technique on-chip cache 
memory for storing IFM points can be reduced from 16 to 
32 times, compared to some of the previously proposed 
solutions [15], while at the same time increasing power 
consumption due to the additional DRAM data movement 
by no more than 15%, for all CNN networks that were used 
in the experiments. 

Table 2 presents the implementation results for the ISM 
module, shown in Fig. 4, for various sizes of ISB cache, 
ranging from 2048 IFM points to 131072 IFM points. These 
results we obtained after performing synthesis and 
implementation steps using Xilinx Vivado 2018.3 software 
tool using default tool settings. 

As can be seen from Table 2, all instances of the ISM 
module require very little hardware resources, when LUTs 
and DSPs are concerned. The situation is different when 
BRAM usage is concerned, where a significant increase can 
be observed as the size of the ISB cache is increased.  
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TABLE 2: UTILIZATION. 

ISB SIZE BRAM LUT DSP

131072 64 1275 13

65536 35 1186 13

32768 21 1133 13

16384 14 1067 13

8192 10.5 1050 13

4096 8.5 1023 13

2048 7.5 1017 13
 
When BRAM resources are concerned, from Table 2 it 

can be observed that there is an almost exponential increase 
in required BRAMs to implement the ISM module as the 
ISB cache size is increased. This observation was the main 
motivation for developing an ISM module with the “IFM 
striping” capability. 

From Table 2 it can be seen that there is no increase in 
required DSP blocks as the size of ISB cache is enlarged 
from 2048 to 131072 IFM points. This was expected, since 
DSP blocks are not used to build ISB cache, so their number 
should remain constant. 

Finally, from Table 2, it can be seen that there is an 
increase in required LUT number as the size of ISB cache 
increases. However, the maximum LUT increase is no more 
than 25%, compared to the situation when the ISB cache 
size is 2048 IFM points. 

The implementation of the ISB cache reduces latency 
access to memory.  For hardware experiments, we used the 
Xilinx ZCU102 development board. On the board, the ISM 
implementation can work on 245 Mhz frequency. For that 
frequency, the latency from the ISM to the DDR memory is 
at least 34 cycles, and latency to the ISB cache is one cycle. 
Each time that the ISM access the data inside ISB, the 
latency is reduced from 34 cycles to 1. 

The latency needed at the beginning of classification for 
filling of ISB cache is negligible for the large IFMs. Only 
one stick is required for the start of calculation, so the 
average time for memory access approaches one cycle. 
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