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Abstract — Recognizing and accurately classifying human 

emotion is a complex and challenging task. Recently, great 
attention has been paid to the emotion recognition methods 
using three different approaches: based on non-physiological 
signals (like speech and facial expression), based on 
physiological signals, or based on hybrid approaches. Non-
physiological signals are easily controlled by the individual, 
so these approaches have downsides in real world 
applications. In this paper, an approach based on 
physiological signals which cannot be willingly influenced 
(electroencephalogram, heartrate, respiration, galvanic skin 
response, electromyography, body temperature) is presented. 
A publicly available DEAP database was used for the binary 
classification (high vs low for various threshold values) 
considering four frequently used emotional parameters 
(arousal, valence, liking and dominance). We have extracted 
1490 features from the dataset, analyzed their predictive 
value for each emotion parameter and compared three 
different classification approaches – Support Vector 
Machine, Boosting algorithms and Artificial Neural 
Networks. 

Keywords — DEAP database, emotion recognition, 
machine learning, physiological signals. 

I. INTRODUCTION 

MOTION is a complex behavioral phenomenon which 
includes different levels of neural activations and 

chemical reactions in the human brain [1]. Emotion is a 
combination of human thought, feeling and behavior, and 
can be defined as a physiological reaction to different 
external stimuli [2]. 

For decades, emotions and emotion recognition have 
attracted a lot of attention which resulted in a variety of 
approaches that could be grouped into two distinct 
categories. The first group consists of methods based on 
non-physiological data such as speech [3] and facial 
expressions [4]. The advantage of this approach is the fact 
that the data is easily collected, without the need for any 
specialized and costly equipment. However, non-
physiological signals can be willingly controlled which 
means that individuals can mask their emotion, and cause 
uncertainty in the classification that cannot be detected and 
removed. The second group relies on physiological data 
such as electroencephalography (EEG) [2], 
electromyography (EMG) [5], electrocardiography (ECG) 
[6], galvanic skin response (GSR) [7], etc. This approach 
allows better correlation with an actual emotional state, 
but at the same time makes it harder to set up the 
experiment, requires special equipment and subject 
preparation. Noise inherently present in these signals can 
also present an obstacle to reliable emotion recognition. 

Hybrid approaches imply multimodal methods for 
emotion recognition that combine non-physiological and 
physiological approaches. Huang et al. [8] proposed a 
combination of facial expressions and EEG signals for 
emotion recognition, Fig. 1. The same approach was used 
by Tan et al. [9]. A Python package for the same task called 
MindLink-Eumpy was introduced by Li et al. [10]. In 
theory, this allows taking the best of both methods which 
should result in a higher accuracy. 
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Fig. 1. The arousal/valence space. 
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The most common dimensional space used for 
describing emotions is the arousal/valence space, where 
emotions are described in terms of the intensity - going 
from ‘inactive’ to ‘active’ in the arousal dimension, and 
from ‘unpleasant’ to ‘pleasant’ in the valence 
dimension [11]. 

Aside from valence and arousal, other parameters 
commonly used in literature to present emotions are 
dominance (ranging from ‘helpless’ to ‘in control’) and 
liking. 

These four parameters, alongside familiarity, are also 
used in the most used open database of physiological 
signals for emotion classification - DEAP [12]. 

The reported accuracies in the paper that has introduced 
the DEAP database [12] are 65.1%, 62.7% and 67.7%, and 
the F1 score 61.8%, 60.8% and 63.4% for arousal, 
valence, and liking, respectively. Torres-Valencia et al. 
[11] reported the highest accuracy value of 75% for binary 
arousal classification (high vs. low) when combining EEG, 
GSR, and ECG signals, and 58.7% accuracy for binary 
valence classification in case of using only EEG signals 
(F1 scores were not reported). Yang et al. [13] opted for an 
approach using a multi-column CNN-based model using 
EEG signals and reported accuracies of 90% and 90.6% 
for valence and arousal respectively. 

An important aspect of emotion recognition is 
subjectivity. Emotion itself is a subjective occurrence 
which makes it difficult to generalize. There are two 
approaches regarding this issue – inter-subject and cross-
subject. Even though inter-subject classification gives a 
higher accuracy in general, its applicability in real world 
cases is limited because it requires model recalibration or 
retraining for each new user, which can be very costly and 
time consuming. In this study, the cross-subject approach 
was chosen due to higher real-world applicability. 

This paper provides an extended and modified version 
of results first presented in the paper “Emotion 
Recognition Based on DEAP Database Physiological 
Signals” [14]. The main goal of the study is a broad 
analysis of all available physiological data from the DEAP 
database, as well as evaluation of different machine 
learning algorithms for the purpose of emotion 
recognition. In this paper, we present an improved feature 
selection method, and a more detailed analysis of results 
together with the effects of choosing different thresholds 
for binary class definitions. 

II. METHODOLOGY 

A. The DEAP database 

The DEAP database consists of 40 physiological signals 
from 32 subjects recorded while watching 40 different 
music videos. After each video, the subjects gave ratings, 
based on which emotions are labelled. The physiological 
signals included in the dataset are: 32-ch 
electroencephalogram (EEG), 2-ch electrooculogram 
(EOG), plethysmogram, respiration pattern, 2-ch 
electromyography (on zygomaticus major muscle, zEMG 
and trapezius muscle, tEMG), galvanic skin response 

(GSR) and body temperature. The sampling rate for all 
signals was set to 512 Hz. The DEAP database also 
includes recordings of facial expressions, which were not 
considered in our research. 

In this paper, we used the pre-processed data available 
at https://www.eecs.qmul.ac.uk/mmv/datasets/deap/.  

The parsed, pre-processed, and down sampled (by 
factor 4) data has the dimension 40x40x8064 which 
correspond to (number of videos) x (number of 
physiological channels) x (number of samples in one 
recording). 

B. Signal processing and feature extraction 

Data analysis was done in the Python programming 
language (Python Software Foundation, Delaware, USA). 
Aside from standard libraries used for scientific analysis 
like NumPy [15] and SciPy [16], we used the 
pyphysio library [17] for signal processing and feature 
extraction. The complete project code and further 
information is available at the following GitHub 
repository: 
https://github.com/nebojsa55/EmotionRecognition. 

A review of all generated features (extracted from 8064 
samples for each subject and for each video) is given in 
Table 1. 

The focus of EEG analysis was on the statistical 
features of different frequency bands such as alpha (8-
12 Hz), beta (13-30 Hz), gamma (30+Hz), and theta (4-
8 Hz). Other EEG features included power spectral density 
(PSD) in different bands and Hjorth features (activity, 
mobility, and complexity) [18]. The resulting set consists 
of 44 features for each of the 32 EEG channels. 

Respiratory signal features were extracted in the same 
way as features for heart rate variability - using the 
hrvanalysis [19] Python library. Before the analysis, 
the signal was filtered using a low-pass Butterworth filter 
(order 2, flow=32 Hz). 

Galvanic skin response (GSR) signal has two basic 
components – DC component which represents general 
activity of the sweat glands, and skin conductance 
response (SCR) component that is a good indicator of 
arousal level due to external sensory and cognitive stimuli 
[20]. A low-frequency drift was extracted from the GSR 
signal by applying a Moving Average (MA) filter, which 
was then subtracted from the GSR signal. This way the 
SCR component was singled out and additionally filtered 
by low pass (LF) fir filter (flow=0.2 Hz) to obtain LF SCR 
signal and by very low pass (VLF) fir filter (flow=0.08 Hz) 
to obtain VLF SCR. 

EMG features were extracted from raw tEMG and 
zEMG signals, low pass fir filtered tEMG and zEMG 
signals (flow=0.3 Hz) and very low pass fir filtered tEMG 
and zEMG signals (flow=0.08 Hz).  

Plethysmography measurements represented the change 
in blood volume, so this signal could be used to estimate 
beat-to-beat intervals. Heart rate variability (HRV) signal 
was calculated using the hrvanalysis [19] Python 
library from beat-to-beat intervals extracted from the 
plethysmography signal. 
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TABLE 1: EXTRACTED FEATURES, PSD – POWER SPECTRAL 

DENSITY, STD– STANDARD DEVIATION, VLF – VERY LOW 

FREQUENCY, LF – LOW FREQUENCY, HF – HIGH FREQUENCY, RMS – 

ROOT MEAN SQUARE, SCR – SKIN CONDUCTANCE RESPONSE 

Si
gn

. 

Features 
Total = 
1490 

E
E

G
 [

20
] 

For raw and normalized (range [0-1]) EEG 
signals: 
Mean, Standard deviation, Mean of first 
derivative, Mean of second derivative  

32 ch x 8 
features 

Hjorth features (Activity, Mobility, Complexity) 
32 ch x  

3 features  
For alpha, beta and theta band: 
PSD 
For raw and normalized (range [0-1]) EEG signals 
in alpha, beta and theta band: 
Mean, Standard deviation, Mean of first 
derivative, Mean of second derivative  

32 ch x 3 
bands x 

9 features  

For alpha, beta and gamma band: 
Energy, Recursive energy efficiency 

32 ch x 3 
bands x 

2 features 

H
R

V
 [

12
,2

4]
 

First derivative, 
Mean arc-length, RMS, 
Area-perimeter ratio, 
Mean and standard deviation, 
PSD in LF band - [0.01, 0.08] Hz,  
PSD in medium band - [0.08, 0.15] Hz 
PSD in HF band - [0.15, 0.5] Hz, 
PSD ratio between [0.04, 0.15] Hz and HF band 

10 
features 

R
es

pi
ra

ti
on

 [
20

] 
 

Maximum amplitude in frequency spectrum, 
Mean spectrum in [0.2, 0.5] Hz, 
Maximum amplitude in PSD, 
Mean PSD in [0.2, 0.5] Hz 

4 features 

Mean, Standard deviation, 
Median and Range of peak-to-peak intervals, 
STD of first derivative of intervals, 
Mean of breathing rate, STD of breathing rate, 
Maximum and minimum of breathing rate,  
Number of intervals larger than 50 and 20 ms 
and their ratio in total number of intervals, 
Square root of mean of sum of peak-to-peak 
intervals, Coefficient of interval change and 
variation, Total PSD, 
PSD in VLF range [0.003, 0.04] Hz 
PSD in LF) range [0.04, 0.15] Hz 
PSD in HF range [0.15, 40] Hz, 
LF/HF ratio, Normalized power in LF and HF 
domain 

23 
features 

G
SR

 [
12

, 2
0]

 

4 features for raw SCR and LF SCR: 
Mean value, Standard deviation, Mean of first 
derivative, Mean of second derivative 
4 features for LF and VLF SCR: 
Numbers of peaks in LF SCR, 
Number of peaks in VLF SCR, 
Number of peaks ratio in LF and VLF SCR, 
Mean of amplitude of LF and VLF SCR 

12 
features 

Zero-crossing rate for LF SCR and VLF SCR 2 features 

E
M

G
 [

12
, 2

0]
 

PSD in [4, 40] Hz for zEMG and tEMG signals 2 features  

4 features for raw and LF tEMG and 4 features for 
raw and LF zEMG signals: 
Mean value, Standard deviation, mean value of 
first derivative, Mean value of second 
derivative  
3 features for LF and VLF tEMG: 
Number of peaks in LF tEMG, 
Number of peaks in VLF tEMG, 
Number of peaks ratio in LF and VLF tEMG 
3 features for LF and VLF zEMG: 
Number of peaks in LF zEMG, 
Number of peaks in VLF zEMG, 
Number of peaks ratio in LF and VLF zEMG 

22 
features 

T
em

p.
 

[1
2]

 Mean, Standard deviation, First derivative, 
Minimum value, Maximum value, 
PSD in [0, 0.1] Hz, PSD in [0.1, 0.2] Hz 

7 features 

C. Class labeling 

Subjects gave ratings along multiple parameters after 
every video watched. Of these, we picked four parameters 
- valence, arousal, dominance and liking. Values for each 
parameter was in range [1, 9]. The classification problem 
was considered as the binary classification for each of the 
four previously mentioned parameters. Classes were 
defined as “0” and “1” which represented low and high 
parameter value, respectively. In this study, the class 
distinction boundary was set to 4.5. Classes were slightly 
imbalanced (around 60% of values fall in the high range). 

We performed an analysis of the effect of changing the 
threshold on classification accuracy. Fig. 2 shows the 
results of training a Support Vector Machine (SVM) for 
each cut-off. As higher accuracy is achieved only on 
thresholds corresponding to an even higher-class 
imbalance (suggesting it is a result of the classifier always 
predicting the more common class), 4.5 was chosen as the 
boundary in the rest of our analysis. 

 
Fig. 2. Accuracy scores for different class definition 

thresholds. 

D. Feature informativeness and dimensionality 
reduction 

The importance for each feature and each emotion 
parameter was analyzed by mutual information between 
the feature and target variable, using the implementation 
available in the sklearn package [21]. 

As the final extracted set of features was of too high 
dimensionality for the size of available data: 1490 features 
vs 1280 recordings (32 subjects x 40 videos = 1280), 
dimension reduction was performed. The first step was 
removing repetitive features (when absolute correlation 
between two features is over 0.95, the feature which has a 
lower mutual information score with the target is 
removed). 
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Fig. 3. Accuracy scores by number of features used SVM 

(top), CatBoost (middle) and ANN (bottom). 

Next step was analyzing changes in classification 
accuracy when increasing the number of used features. 
This task was done for the SVM, CatBoost [22] and 

Artificial Neural Network (ANN) classifier. Fig. 3 shows 
mean cross-validation accuracy values and standard 
deviations achieved using SVM, CatBoost and ANN. The 
final set of features is decided based on maximum 
accuracy values for each emotion parameter and each 
classifier individually. The selection of features in each 
step for the first two classifiers was performed using the 
recursive feature elimination (RFE) algorithm. For the 
ANN, feature selection was performed by iteratively 
adding features ranked by their mutual information score.  
The network architecture in each iteration was adjusted so 
the size of the hidden layers is ¼ (1/2 for liking parameter) 
and 1/6 of the number of input features.  

The final number of features for each machine learning 
algorithm is as follows: 

 Catboost – 50 features for valence, 100 features for 
arousal, 50 features for dominance and 250 features 
for liking 

 SVM – 200 features for valence and 300 features for 
arousal, dominance, and liking  

 ANN – 400 features for arousal, 900 features for 
valence, 700 features for dominance, 300 features 
for liking. 

E.  Classification 

After feature extraction and dimensionality reduction, 
the evaluation of different machine learning algorithms 
was performed. 

The first evaluated method was Support Vector Machine 
which works by translating the feature space to a higher 
dimensionality one, where the data becomes linearly 
separable. The SVM implementation was realized using 
the sklearn package. Linear kernel was selected with 
0.01 regularization parameter.  

Boosting algorithms were considered for their 
historically good performance on tabular datasets. For this 
problem, CatBoost [25] Python package was chosen. 
Classifier parameters were selected using grid search – 
loss function was LogLoss with a learning rate of 0.1, a 
maximum tree depth of 3 and subsampling ratio of 0.8. 

The third approach that was performed was ANN: a 
network with two hidden layers and a LeakyReLU 
activation function. Training was done for 50 epochs and 
the model that achieved the best validation accuracy was 
selected. Learning rate was set at 0.02, with a reduction by 
a factor of 0.5 every 5 epochs. Overfitting was resolved by 
using batch normalization and dropout regularization. The 
PyTorch [23] library was used for ANN implementation. 

III. RESULTS AND DISCUSSION 

A. Correlation between emotion parameters 

The correlation between each emotion parameter for all 
participants was calculated, along with the correlation 
between parameters and the videos (Video_id) participants 
were watching. The absolute values are shown in Fig. 4. 

The most correlated parameters are valence and liking, 
and valence and dominance. Correlation with Video_id 
shows us how similarly the participants rated the videos 
for each emotion parameter. Arousal is uncorrelated to the 
Video_id, indicating there was great disagreement 
between participants when rating videos in this parameter. 
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Fig. 4. Correlation matrix of emotion parameters. 

B. The most informative features 

Fig. 5 shows the top 10 features for each emotional 
parameter ranked by mutual information scores. 

For arousal, the most important feature is the number of 
peaks in low-passed zEMG signal. Most of the important 
features come from EEG in the beta, theta, gamma, and 
alpha frequency band. 

For valence, all of the important features are extracted 
from EEG signal. The most important feature is the mean 
value of the second derivative of signal from the F7 
electrode in the alpha band. 

For liking, most features come from EEG, combined 
with GSR and respiration.  

For dominance, only one feature in the top 10 comes 
from EEG. The most important is the number of peaks in a 
low-passed tEMG signal. Other important modalities are 
zEMG and GSR. 

C. Classification evaluation 

Table 2 shows accuracy and F1 scores reached using 
SVM, CatBoost and ANN methods for each emotional 
parameter. All shown accuracies and F1 scores are mean 
values calculated on 10-fold stratified cross-validation 
(90:10 train-test ratio). 

CatBoost and ANN reached very similar scores, while 
SVM performed the best for every parameter. The best 

accuracy was achieved for the valence parameter (78.1%), 
and the best F1 score for liking (85%). For arousal and 
dominance, the accuracies were somewhat lower (75.2% 
and 75.3% respectively). The full comparison is given in 
Table 2. 

TABLE 2: CLASSIFIER EVALUATION 

Arousal  
(%) 

Valence  
(%) 

Dominance (%) 
Liking 
(%) 

Acc F1 Acc F1 Acc F1 Acc F1 

SV
M

 

75.2 82.1 78.1 83.7 75.3 82.9 77.0 85.0 

B
oo

st
 

65.4 77.0 67.1 77.6 67.7 79.8 69.5 81.7 

A
N

N
 

67.0 77.9 68.0 77.8 69.6 80.4 71.3 82.5 

 
These results outperform the classification described in 

Koelstra et al. [12] on the same dataset. Valence 
classification accuracy outperforms the one given by [11] 
(78.1% vs. 58%) while for arousal it is very similar 
(75.2% vs 75%). 

IV. CONCLUSION 

In this paper, we have compared the results of binary 
classification (high vs low) using different machine 
learning approaches (SVM, CatBoost, ANN) in case of 
four typical emotional parameters (arousal, valence, 
dominance and liking) on the publicly available DEAP 
dataset. An extensive set of features (1490) was generated 
from the available physiological signals. The final 
achieved classification accuracy was higher than 
previously reported, particularly when using the SVM 
classifier, which showed superior results in comparison to 
other two classifiers. The inability to further improve the 
accuracy might be due to the general nature of cross-
subject emotion classification or an inherent problem 
within the reliability of data labeling according to 
subjective criteria. 

 

 
Fig. 5. Mutual information for top 10 features. 
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Analysis of the ratings given by each subject shows 

great discrepancies in how the videos used in the 
experiment are perceived. This might be remedied by 
conducting an experiment choosing a different set of 
videos, particularly ones that have low rating deviations. 

Feature analysis has shown that EEG signals carry the 
most information, but other modalities are not to be 
discarded, as for the dominance parameter 
electromyography and GSR carry the most information. 

An important limitation of this analysis is the small 
number of subjects, influenced by the complexity and 
nonconformity of the experiment. Further research 
improvements could be made by applying the hybrid 
approach to the analysis, based on the combination of 
physiological and non-physiological (face expression) 
data. 
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