
Telfor Journal, Vol. 14, No. 2, 2022. 85

Original scientific paper

Abstract — The accelerated development of technologies,

especially in the field of telecommunications, ease the

integration of embedded devices within various IoT

applications. Modern IoT applications assume heterogenous

embedded platforms capable of collecting, processing, and

exchanging data between the tiers of the IoT system

architecture. Designing a multi-tier IoT system, even in the

case of architecture that involves a small number of

intelligent embedded devices, can be a very demanding

process, especially when dealing with the strict requirements

of IoT application concerning application performance,

scalability, and energy consumption. In this paper, an open-

source simulation framework for the performance analysis of

an arbitrary multi-tiered IoT system is presented.

Framework supports insight into the data availability within

the tiers of IoT system enabling designers to evaluate the

performance of IoT application and to engineer the system

operation and deployment. Besides the performance analysis,

proposed framework enables the analysis of energy

consumption, architecture scalability utilizing different

communication patterns and technologies. The case study of

a large-scale IoT application for demonstrating the

framework potential regarding the scalability and data

availability analysis is also given.

Keywords — IoT, Simulation framework, Large Scale,

Scalability.

I. INTRODUCTION

N recent years we have witnessed the increasing

prevalence and use of various IoT systems within

different application areas (automotive, health, smart

homes, smart cities, smart industry, etc.). An IoT system

includes devices that produce data, mostly by sensing their

environment, and exchange generated data with each other

or with other parts of the IoT system through an internet

network. Modern IoT applications are characterized by the

constant trend of increasing the number of devices, and it

is assumed that this trend will be kept in the future [1].

Due to the increase in the number of devices, there is a

need to design an optimal architecture of modern IoT

applications that is, among other things, able to meet the

requirements in the field of storage and processing of a

huge amount of data.

Designing the architecture of today's modern IoT

applications is a very serious challenge. It is not only

important to create an architecture that will enable the

storage and processing of a huge amount of data, since it is

also important to select appropriate communication

technologies and available protocols which optimally

satisfy application requirements such as scalability, real-

time performance, efficient use of available energy, and

many others.

For a long time, the main architectural model in IoT

application was given in the form of centralized computing

and storage power. Because of limited storage and

processing power of the end IoT sensing devices, data

generated by these devices were sent to the central server

for further processing. For IoT applications that are not

demanding in terms of data latency, this architectural

model is still applied today [2]. However, the current

infrastructure of the Cloud is not designed to achieve the

real-time performance that is required by the most modern

IoT applications. Also, because this is a centralized

computing model, there is an issue related to scalability.

Therefore, over time, a novel computing model was

developed with the idea to bring storage and processing

power closer to the IoT end devices to reduce the data

flow to the central server [3][4]. In the Fog architectural

model, the topology can be hierarchical, which means the

data from the end IoT devices can be processed at several

tiers; each tier carrying out specific data filtering and

analytics and deciding whether to pass to the next tier for

further Fog/Cloud processing [5], [6]. In this case, it is

possible to reduce the amount of data exchanged between

tiers closer to the centralized services and overall system

scalability is increased [7]. Until now, there have been

several multi-tiered Fog model proposals which address

different requirements of IoT applications [8], [9].

To create architecture that will satisfy strict IoT

application requirements, it is necessary to have an insight

Simulation Environment for Scalability and

Performance Analysis in Hierarchically

Organized IoT Systems

Haris Turkmanović, Ivan Popović, Zoran Čiča, and Dejan Drajić, Senior Member, IEEE

I

Paper received May 25, 2022; revised October; accepted October

29, 2022. Date of publication December 26, 2022. The associate editor

coordinating the review of this manuscript and approving it for
publication was Prof. Miroslav Lutovac.

This paper is revised and expanded version of the paper presented

at the 29th Telecommunications Forum TELFOR 2021 [28].

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of Serbia.

Corresponding author is Haris Turkmanović from the School of
Electrical Engineering, University of Belgrade, Serbia (e-mail:

haris@etf.bg.ac.rs).

Ivan Popović is with the School of Electrical Engineering,
University of Belgrade, Bulevar kralja Aleksandra 73, 11120

Belgrade, Serbia (e-mail: popovici@etf.bg.ac.rs).

Zoran Čiča is with the School of Electrical Engineering, University
of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia

(e-mail: cicasyl@etf.bg.ac.rs).

Dejan Drajić is with the School of Electrical Engineering,
University of Belgrade, Bulevar kralja Aleksandra 73, 11120

Belgrade, Serbia and with Innovation Center, School of Electrical

Engineering, University of Belgrade, Bulevar kralja Aleksandra 73,

11120 Belgrade, Serbia (e-mail: ddrajic@etf.bg.ac.rs).

86 Telfor Journal, Vol. 14, No. 2, 2022.

into the behaviour of the system, especially in the data

flow through the IoT system, from the moment when data

are generated on the IoT sensing devices until the data are

processed on each layer, in case of a multi-tiered

architectural model, or at the core services, in case of

Cloud processing model. This approach is very important

in the design phase before an application is deployed in the

real environment, to better understand system behaviour

but also to choose the best communication technologies

and communication models which will be used within the

selected architecture model [10].

Insight into the system behaviour can be achieved in

two ways: by using real hardware and measurement

equipment – which is in most cases very impractical [11]

or by creating, or using already developed, simulation

frameworks – this is a very efficient approach that speeds

up the development of IoT architecture especially in case

of large scale IoT applications [12], [13].

Simulators allow researchers to provide a proof-of-

concept for new solutions in a virtual environment by

avoiding time-consuming, heavyweight, or expensive real-

world experimentation [14]. Until now, different

simulation frameworks have been developed to ease the

process of designing IoT applications [15]. They can be

classified into three categories: full-stack simulators, big

data processing simulators, and network simulators [12].

Full-stack simulators, such as DPWSim [16] and iFogSim

[17], provide a wide range of models for different IoT

components but they are not capable of simulating

scenarios that include the flow of a huge amount of data

within IoT system. Big data processing simulators, such as

IOTSim [18], focus on the big data processing within IoT

applications but they do not enable precise implementation

of IoT end devices models engaged in IoT architecture.

Network simulators, such as NS3 [19] and CubCarbon

[20], provide an insight into IoT behaviour from a

functional aspect but they do not provide support for a

detailed energy and scalability analysis of arbitrary IoT

architectures.

This paper presents a simulation framework that enables

the simulation of data flow through any IoT application. It

enables the easy development of large-scale distributed

IoT applications. Also, it is possible to easily create an

architecture for any IoT application, even for the

application that deals with a huge number of IoT end

devices. The developed framework enables the analysis

and quantification of different IoT application parameters

such as real-time performance parameters, IoT device

consumption parameters, scalability of the architecture,

etc. It is also possible to have an insight into data

availability at any moment at any part of the IoT system

architecture. This framework was originally presented in

[26] while this paper presents a more detailed description

of simulation framework core’s functionalities and also

demonstrates framework overall capabilities in the field of

IoT system scalability, energy and real-time analysis.

The rest of the paper is organized as follows: Section II

presents the developed simulator and describes the used

model. In section III, on the example of multi-tiered IoT

application, it is demonstrated how to quantify scalability

of the architecture by using a developed simulation

framework. Additionally, data availability time

distribution is presented and analysed. In section IV, a

conclusion is given with future work directions.

II. SIMULATION FRAMEWORK DESCRIPTION

The developed simulation framework enables the

creation of arbitrary hierarchically organized architectures

for a wide range of IoT applications. Within the

framework, general models of components have been

developed that makeup one IoT architecture in the general

case. Using these models, it is possible to create an

architecture for any IoT application. Within the first part

of this section, the available general models, as well as

their parameters, are described. In the second part of this

section, the general technical characteristics of the

developed simulator are presented.

III. MODELS USED WITHIN SIMULATION FRAMEWORK

To enable the simple creation of the IoT application

architecture, and to examine the scalability properties of

the designed architecture, a logical decomposition of the

IoT architecture into basic building components is

performed in this research. From a high-level perspective,

most IoT architectures consist of devices that generate data

and/or perform data processing, links that connect these

devices, and protocols used to encapsulate the generated

data and send it to the destination [21], [22]. According to

this classification the following models are introduced in

the simulator: node model, link model, and protocol

model. Within all these models, it is possible to configure

certain parameters to make the best representation of

desired IoT application architecture.

The Node model is introduced to represent devices

within the IoT application that can produce and/or process

or consume data. For example, in IoT applications, this

model represents an IoT sensing node or smart network

gateway. Two types of node models are supported within

the simulation framework: producer node model and

consumer node model. Consumer node model represents

the device that is only capable of receiving, processing and

optionally transmitting data to other nodes (if it is not the

final node on the data path). For example, in real IoT

applications, the consumer node model represents

gateways that have capabilities to implement some data

processing algorithm (for example, algorithms for data

aggregation [23]). The producer node model represents a

device, which is also capable of implementing simple data

processing, but the main role of this model is to represent

IoT devices that generate data with some predefined

frequency. The list of parameters for consumer node and

for producer node that can be configured within is

presented in Table 1.

The Link model enables the simulation of

communication between architecture components, and it

presents a high perspective representation of real physical

communication links. Parameters which can be configured

within this model are listed in Table 2. These parameters

define communication performance based on knowledge

of the communication model and communication

Turkmanović et al.: Scalability and Performance Analysis in Hierarchically Organized IoT Systems 87

technology. They refer to physical layers, data links,

network layer, application layer, etc.

The protocol model defines a communication protocol

between a producer and consumer device. The

configurable parameters within this model are presented in

Table 3.

TABLE 1 - LIST OF THE CONFIGURABLE PARAMETERS FOR

NODE MODEL

Param. Name Description

Supported by node

model

Producer Consumer

PS - Processing
speed [B/R]

Defines data processing

speed in bytes per time

resolution

Yes Yes

CL - Compression
Level

Defines ratio for data

reduction before they

are sent from node

Yes Yes

AL - Aggregation

Level

Define how many data
packets are stored on

the node before they are

sent

Yes Yes

DPC - Data

processing

consumption [mA]

Current consumption

when device is active Yes Yes

LPC - Low-power
mode consumption

[mA]

Current consumption
when device is in low-

power mode

Yes Yes

SR - Sampling
rate [R]

Data generation
frequency

Yes No

DS - Data size [B] Size of generated data Yes No

TABLE 2 - LIST OF CONFIGURABLE PARAMETERS FOR LINK MODEL
Parameter name Description

S - Speed [B/R] Link speed. Unit is bytes per time resolution

MTU - MTU Size[B] Size of the link MTU

TCT - Transceiver

Consumption during
Transmit [mA]

Consumption when transmitting data from

node

 TCR - Transceiver

Consumption during

Receive [mA]

Consumption when receiving data on the

node

TABLE 3 - LIST OF CONFIGURABLE PARAMETERS FOR

PROTOCOL MODEL
Parameter name Description

O - Overhead size [B] Size of the overhead introduced in data

processing

ARQ - ARQ

handshaking

Defines whether response data packet will be

generated when request packet is delivered

on final node.

IV. TECHNICAL DESCRIPTION OF THE SIMULATOR

The developed simulation environment consists of two

parts: GUI part [24] and the core application part [25] and

results parser part. GUI part is written in the C#

programming language, and it gives a user the ability to

easily create the architecture of large-scale IoT

applications. An overview of one GUI part, responsible for

creation of the nodes, is presented in Fig. 1.

Thanks to the developed GUI, users can easily create all

nodes, links, and protocols. It is also possible to make the

connection between the nodes by using the previously

created link and it is possible to assign protocols to certain

data which are produced on IoT end nodes and it is very

easy to configure all model parameters listed in Tables 1-

3. When an IoT application architecture is created,

configuration files are produced by the GUI. These files

are used by the core of the simulation framework.

Fig. 1. Simulator GUI.

The core application of the simulation environment is

written in the C programming language because it is time

efficient. Especially, this is important in the case of large-

scale IoT applications where the number of nodes that are

involved in simulation, can be very huge and simulation

may execute for a very long time. This core application as

simulation input parameters takes configuration files

produced by the GUI application. When a simulation is

done, results are written in two types of log files: Node log

file and System log file.

For each node in the system, a separate Node log file is

created. This file contains information like when data is

created (in case of producer node), when data is received,

when data processing is started, when data processing is

ended and others. An example of one Node log file is

presented in Fig. 2.

Fig. 2. Part of the node log file.

Each action on the node is sampled to one line in Node

log file. There are two types of log lines in Node log file:

LP- lines and A-lines. LP-line gives information about

node status while node is in a Low-Power mode. A-line

gives information about current data processing status and

node status when node is in an active state.

The first column for both log line types is the same and

presents a timestamp of the action. Node log line type is

written in the second column. In case of LP-line type, the

third column marks whether a node exits from Low Power

mode (EXIT), or a node enters a LP state (ENTER). The

fourth column presents node consumption in a LP mode

while the fifth column presents how much energy node

consumes during Low-Power. In case of A-line the third

column presents size of data that currently is processed on

the node. The fourth column represents data state

(request/response data created, processing data, processing

data overhead, send data, receive data). Data ID is

presented in the fifth column. Based on data ID it is

possible to track specific data over network. From column

6 to column 10 is listed additional node information

related to data processing. Column 11 presents node

88 Telfor Journal, Vol. 14, No. 2, 2022.

consumption during an active state while column 12

presents energy consumption between a current and

previous action on the node.

One general simulation log file, System log file, is

created and it shows when data are created and when data

have arrived at the destination node. An overall system

performance related to the data availability across the IoT

system can be examined by analysing only this file.

By examining these two types of created log files, it is

possible to get an insight into data flow across the network

and it is also possible to analyse different IoT application

performances of interest such as nodes consumption,

scalability, average data delivery time, real-time

performance, etc.

V. USE CASE

As already mentioned, the developed simulation

environment enables the analysis and quantification of the

influence of different architecture parameters on the

performance of IoT applications. In [26], we have

presented the potential of developed simulation framework

in the case of energy consumption analyses on end IoT

nodes.

The architecture of the multi-tiered IoT system, used in

our example, is shown in Fig. 3. Within this section, we

show the potential that the developed simulation

environment has in the quantification of architecture

scalability (section A) and distribution of data availability

within the IoT network (section B).

Fig. 3. Multi-tier IoT system architecture used in analysis.

Presented architecture consists of 4 tiers. Each tier is

composed of data processing devices that are introduced

into the simulation by using a node model. Devices that

belong to the same tier have the same characteristics, and

accordingly, the parameters of the node model used in the

simulation are also the same. There are Sx20 devices

located at the first tier which produce data. For example,

these devices present IoT sensing devices in real world

environment.

We have used the same architecture topology in section

A to demonstrate the simulator capability in the scalability

analysis of arbitrary architecture, and in section B to

present the simulator capability to be used in data

availability analysis.

A. Scalability analysis

IoT devices are introduced in simulation by using the

model of producer node and they are in Tier 1. The second

tier includes devices that process the data received from

the lower-tier devices. For example, devices within this

tier represent a smart gateway that is capable of

implementing data size reduction algorithms to reduce the

overall data flow through the system. These devices are

introduced in simulation by using the model of consumer

node. Each device located in tier 2 receives data from S

devices in layer 1. The third layer consists of devices that

are also modelled as consumer nodes. The devices of this

tier additionally process the data received from the 5

devices of the lower tier. The central device is the only

device in the fourth tier, and it has the highest data

processing speeds compared to all other devices that make

up the IoT system. Each Tier’s parameters values are listed

in Table 4.

Link L1 is established between the first and second-tier

devices. This link represents slow wireless communication

links usually used within IoT sensing devices (Lora, NB-

IoT, GPRS, etc.). Between the second- and third-tier

devices a link L2 is established which represents a wire

link with a higher speed (for example, 10Mbps Ethernet

link). L3 link is established between the third- and fourth-

tier devices and it is the fastest speed link in architecture

(for example, 1Gbps Ethernet link). Each Link’s

parameters values are listed in Table 5.

TABLE 4 - VALUE OF NODE MODEL PARAMETERS IN ALL

HIERARCHICAL TIERS

Tier Model
PS

[MB/s]

CL/AL DPC

[mA]

LPC

[mA]

SR

[mA]

DS

[B]

1 Node producer 1 1/1 40 10 2s 100

2 Node consumer 1000 1/1 1000 200 x x

3 Node consumer 10000 1/1 5000 500 x x

4 Node consumer 100000 1/1 8000 900 x x

TABLE 5 - VALUE OF LINK MODEL PARAMETERS
Link type S [MB/s] MTU [B] TCT [mA] TCR [mA]

L1 0.05 1500 400 400

L2 1.25 1500 400 400

L3 125 1500 400 400

TABLE 6 - VALUE OF PROTOCOL MODEL PARAMETERS
Protocol Overhead [B] ARQ

P 70 Disabled

The same protocol model is used over the entire IoT

system architecture and its values are listed in Table 6.

During analysis the number of S1 nodes (nodes located

at the first tier that are connected to the same node at the

second tier) is modified from 5 to 10000 while the number

of S2-3 nodes remains constant: S2=5, S3=4. Analysis is

done to find the end limitation of the architecture for a

specific sampling rate. Parameters of the protocol model

used within the simulation are configured to achieve a

push communication model [22]. In this communication

model, data is sent from IoT sensing end device (node) to

the server after they are produced. Results of the

simulations for different S values are presented in Fig. 4.

Fig. 4. Average data availability time.

Turkmanović et al.: Scalability and Performance Analysis in Hierarchically Organized IoT Systems 89

It is expected that for a required sampling rate and

selected architecture, there is a limitation in terms of the

maximum number of nodes in architecture. Fig. 4 present

results obtained after simulation over IoT architecture

from Fig. 3. It is noticeable that our architecture for a

required sampling rate and amount of generated data has

limits in terms of scalability. The maximum number of

producer nodes supported by this IoT architecture is near

S1 x 20 = 6800 x 20 =136000 nodes.

B. Data availability distribution analysis

This analysis was done on the same IoT architecture as

the system architecture in analysis and model’s parameters

values of the IoT system architecture are the same as the

values presented in Tables 4 and 5.

The IoT system topology considered in this analysis has

a fixed number of devices in the lowest hierarchical layer

and is 100. Data within this IoT system are produced

exclusively from sides of the device from the lowest

hierarchical layer with a period of 2s. All devices generate

100B packets. Within this analysis, the distribution of data

availability on the central device within the fourth

hierarchical layer was observed.

In this analysis we present the distribution of data

availability for two classes of applications.

Class 1: with this class of applications, it is necessary to

observe the time required for the data to arrive at the

destination node and the time required for the response

from the destination node to reach the node that generated

the data.

Class 2: this class of applications includes applications

whose work is based on the availability of data at the

destination node. This means that in these applications, the

time required for the data to reach the destination node

should be observed until the path time to the source is

considered.

To achieve described applications behaviour, different

protocol model parameters are used within a certain

application class. These model parameters values are listed

in Table 7.

TABLE 7 – APPLICATION CLASSES PROTOCOL’S MODELS

PARAMETERS VALUES
Application class Protocol Overhead [B] ARQ

1 P1 70 Enabled

2 P2 70 Disabled

Data availability time is considered as the main

parameter for profiling the performance of dedicated

applications that run on a distributed dedicated system.

Data availability times are calculated differently for

different application classes. Data availability time for

Class 1 applications is the time it takes for the data to

reach the destination node, to be processed at the

destination node, to generate a response, and to return the

response from the destination node to the node from which

the data was generated. For Class 2 applications, the data

availability time is the time it takes for the generated data

to reach the destination node and be processed at the

destination node.

Since during the data path, and during the data

generation, there are certain deviations in terms of link

speeds and data generation periods, during the simulation

it is not possible for data on nodes to appear at precisely

defined time intervals and their availability on a node

cannot be accurately predicted. Deviations in the system

occur since data on a node is generated with a period that

deviates from the defined period by a defined percentage.

This deviation was introduced into the simulation to

simulate timing asynchrony on geographically dislocated

processing devices, which is often the case in distributed

dedicated systems. In addition to non-synchronization in

terms of data generation periods, link models support a

parameter that defines the limit of deviation of link speed

from the defined speed. All the above deviations have the

task of simulating the phenomena in real purpose systems

as closely as possible.

As already mentioned, all these deviations lead to the

fact that it is not possible to predict exactly when data is

available and when the application can use it, but it is

necessary to observe the function of distribution of data

availability and extract information of interest. The

distribution functions for one system architecture and for

the two observed application classes are given in Fig. 5.

During the analysis of results, it was assumed that the

data are available on the node at the time when 99 percent

of the generated data will be available. This time will be

marked as T99 parameter in the continuation of the

analysis. The red dot on the graphic indicates that time for

some arbitrary architecture.

(a)

(b)

Fig. 5. (a) Distribution of data availability for class 1

applications, (b) Distribution of data availability for class

2 applications.

In addition to the data availability distribution on a

node, in determining the performance of a system, it is

sometimes easier to observe the data availability integral

of the two application classes shown in Fig. 6. If the

distribution integrals from Fig. 6 are observed, it is easier

to determine the value of the parameter T99.

90 Telfor Journal, Vol. 14, No. 2, 2022.

VI. CONCLUSION

The proposed simulation framework supports the

investigation of operational performance of multi-tier IoT

system, introducing a set of features for modelling data

processing and communication across the system

architecture. Framework capabilities include the analysis

of data availability, system scalability, and energy

consumption under different communication and

deployment scenarios. The case study of large-scale IoT

deployment was given to demonstrate the framework

capabilities and to describe the simulation process.

Distribution of data availability in a multi-tier IoT system

and the supported scalability analysis under the

performance constraints can be used to reveal the

limitations of the IoT system deployment.

As part of further research, we plan to additionally

improve the simulation framework in the domain of user

experience regarding system architecting, component

modelling, parametric analysis, and in improving the

processing performance of simulator core.

(a)

(b)

Fig. 6. Integral data distribution allocation (a) for class 1

application, (b) for class 2 application.

REFERENCES

[1] Cisco Annual Internet Report 2018-2023, White Paper

[2] M. Ejaz, T. Kumar, M. Ylianttila and E. Harjula, “Performance and

Efficiency Optimization of Multi-layer IoT Edge Architecture,” 2nd
6G Wireless Summit (6G SUMMIT), pp. 1-5, 2020.

[3] M. Veeramanikandan., S. Sankaranarayanan, “Publish/subscribe
based multi-tier edge computational model in Internet of Things for

latency reduction,” Journal of Parallel and Distributed Computing,

vol. 127, 2 pp. 18-27, 2019.
[4] N. Dao, Y. Lee, S. Cho, E. Kim, K. Chung and C. Keum, “Multi-

tier multi-access edge computing: The role for the fourth industrial
revolution,” in proc. of ICTC 2017, pp. 1280-1282, 2017.

[5] C. Tseng and F. J. Lin, “Extending scalability of IoT/M2M

platforms with Fog computing,” IEEE 4th World Forum on Internet
of Things (WF-IoT), pp. 825-830, 2018.

[6] Y. Yang, “Multi-tier computing networks for intelligent IoT,”

Nature Electronics 2, pp. 4-5, 2019.

[7] P. Manna, R. K. Das, “Scalability in Internet of Things:

Techniques, Challenges and Solutions,” International Journal for
Research in Engineering Application & Management (IJREAM),

pp. 259-261, 2021.

[8] D. Sinha Roy, R. K. Behera, K. H. K. Reddy and R. Buyya, “A
Context-Aware Fog Enabled Scheme for Real-Time Cross-Vertical

IoT Applications,” in IEEE Internet of Things Journal, vol. 6, no. 2,

pp. 2400-2412, April 2019.
[9] B. V. Philip, T. Alpcan, J. Jin and M. Palaniswami, “Distributed

Real-Time IoT for Autonomous Vehicles,” in IEEE Transactions

on Industrial Informatics, vol. 15, no. 2, pp. 1131-1140, Feb. 2019.
[10] P. Patel, D. Cassou, “Enabling high-level application development

for the Internet of Things,” Journal of Systems and Software, vol.

103, pp. 62-84, May 2015.
[11] X. Zenga, S. K. Gargb, P. Strazdinsa, P. P. Jayaramanc, D.

Georgakopoulosc, R. Ranjand, “IOTSim: A simulator for analysing

IoT applications,” Journal of Systems Architecture, vol. 72, pp. 93-
107, 2017.

[12] M. Chernyshev, Z. Baig, O. Bello and S. Zeadally, “Internet of

Things (IoT): Research, Simulators, and Testbeds,” in IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1637-1647, June 2018.

[13] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noël and G.
Schreiner, “Adding value to WSN simulation using the IoT-LAB
experimental platform,” IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 485-490, 2013.

[14] G. Z. Papadopoulos, A. Gallas, G. Schreiner, E. Jou, T. Noel,

“Thorough IoT testbed characterization: From proof-of-concept to
repeatable experimentations,” Computer Networks, vol. 119, 4 pp.

86-101, June 2017.
[15] Udoh, Itorobong S. and G. Kotonya, “Developing IoT applications:

challenges and frameworks,” IET Cyper-Phys. Syst, Theory &

Appl. 3, pp. 65-72, 2018.
[16] H. Son, L. G. Myoung, C. Noel, L. Nguyen, K. Heo, B. Mihaela, G.

Patrick, “DPWSim: A Simulation Toolkit for IoT Applications

Using Devices Profile for Web Services,” IEEE World Forum on
Internet of Things, WF-IoT, March 2014.

[17] H. Gupta, A. M. Dastjerdi, S. K. Ghosh, R. Buyya, “iFogSim: A

toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing

environments,” Wiley - Special Issue: Cloud and Fog Computing,

vol. 47, Issue 9, pp. 1275-1296, September 2017.
[18] Z. Xuezhi, G. Saurabh, S. Peter, J. P. Prakash, G. Dimitrios, R.

Ranjan, “IOTSim: a Cloud based Simulator for Analysing IoT

Applications,” Journal of Systems Architecture. Vol. 72, pp. 93-
107, January 2017.

[19] T.R. Henderson, M. Lacage, G.F. Riley, “Network Simulator with

NS-3 Simulator,” SIGCOMM, 2008.
[20] K. Mehdi, M. Lounis, A. Bouncer, T. Kechadi, “CupCarbon: A

Multi-Agent and Discrete Event Wireless Sensor Network Design

and Simulation Tool,” Seventh International Conference on
Simulation Tools and Techniques, August, 2014.

[21] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama and N.

Kato, “A Survey on Network Methodologies for Real-Time
Analytics of Massive IoT Data and Open Research Issues,” in IEEE

Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1457-

1477, 2017.
[22] H. Shen, G. Bai, “Routing in wireless multimedia sensor networks:

A survey and challenges ahead,” Journal of Network and Computer

Applications, pp. 30-49, 2016.
[23] L. Feng, P. Kortoçi, Y. Liu, “A multi-tier data reduction mechanism

for IoT sensors,” Seventh International Conference on the Internet

of Things (IoT '17). Association for Computing Machinery, New
York, NY, USA, Article 6, pp. 1–8, 2017.

[24] LSNSimulator core source code,

https://github.com/turkmanovic/LSNSimulator
[25] LSNSimulator GUI,

https://github.com/turkmanovic/LSNSimulatorApp.git

[26] H. Turkmanović, I. Popović, D. Drajić and Z. Čiča, “Lunching real-
time IoT applications on energy-aware embedded platforms,” 15th

International Conference on Advanced Technologies, Systems and

Services in Telecommunications, Niš, pp. 279-282, October 2021.
[27] R. C. Sofia, P. M. Mendes, “An Overview on Push-Based

Communication Models for Information-Centric Networking,”

Future Internet, 11(3), 74, 2019.
[28] H. Turkmanović, I. Popović, Z. Čiča and D. Drajić, “Simulation

framework for performance analysis in multi-tier IoT Systems,”

2021 29th Telecommunications Forum (TELFOR), 2021, pp. 1-4,
doi: 10.1109/TELFOR52709.2021.9653170.

https://github.com/turkmanovic/LSNSimulator
https://github.com/turkmanovic/LSNSimulatorApp.git

