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Abstract — The accelerated development of technologies, 

especially in the field of telecommunications, ease the 

integration of embedded devices within various IoT 

applications. Modern IoT applications assume heterogenous 

embedded platforms capable of collecting, processing, and 

exchanging data between the tiers of the IoT system 

architecture. Designing a multi-tier IoT system, even in the 

case of architecture that involves a small number of 

intelligent embedded devices, can be a very demanding 

process, especially when dealing with the strict requirements 

of IoT application concerning application performance, 

scalability, and energy consumption. In this paper, an open-

source simulation framework for the performance analysis of 

an arbitrary multi-tiered IoT system is presented. 

Framework supports insight into the data availability within 

the tiers of IoT system enabling designers to evaluate the 

performance of IoT application and to engineer the system 

operation and deployment. Besides the performance analysis, 

proposed framework enables the analysis of energy 

consumption, architecture scalability utilizing different 

communication patterns and technologies. The case study of 

a large-scale IoT application for demonstrating the 

framework potential regarding the scalability and data 

availability analysis is also given. 

Keywords — IoT, Simulation framework, Large Scale, 

Scalability. 

I. INTRODUCTION 

N recent years we have witnessed the increasing 

prevalence and use of various IoT systems within 

different application areas (automotive, health, smart 

homes, smart cities, smart industry, etc.). An IoT system 

includes devices that produce data, mostly by sensing their 

environment, and exchange generated data with each other 

or with other parts of the IoT system through an internet 

network. Modern IoT applications are characterized by the 

constant trend of increasing the number of devices, and it 

is assumed that this trend will be kept in the future [1]. 

Due to the increase in the number of devices, there is a 

need to design an optimal architecture of modern IoT 

applications that is, among other things, able to meet the 

requirements in the field of storage and processing of a 

huge amount of data.  

Designing the architecture of today's modern IoT 

applications is a very serious challenge. It is not only 

important to create an architecture that will enable the 

storage and processing of a huge amount of data, since it is 

also important to select appropriate communication 

technologies and available protocols which optimally 

satisfy application requirements such as scalability, real-

time performance, efficient use of available energy, and 

many others. 

For a long time, the main architectural model in IoT 

application was given in the form of centralized computing 

and storage power. Because of limited storage and 

processing power of the end IoT sensing devices, data 

generated by these devices were sent to the central server 

for further processing. For IoT applications that are not 

demanding in terms of data latency, this architectural 

model is still applied today [2]. However, the current 

infrastructure of the Cloud is not designed to achieve the 

real-time performance that is required by the most modern 

IoT applications. Also, because this is a centralized 

computing model, there is an issue related to scalability. 

Therefore, over time, a novel computing model was 

developed with the idea to bring storage and processing 

power closer to the IoT end devices to reduce the data 

flow to the central server [3][4]. In the Fog architectural 

model, the topology can be hierarchical, which means the 

data from the end IoT devices can be processed at several 

tiers; each tier carrying out specific data filtering and 

analytics and deciding whether to pass to the next tier for 

further Fog/Cloud processing [5], [6]. In this case, it is 

possible to reduce the amount of data exchanged between 

tiers closer to the centralized services and overall system 

scalability is increased [7]. Until now, there have been 

several multi-tiered Fog model proposals which address 

different requirements of IoT applications [8], [9]. 

To create architecture that will satisfy strict IoT 

application requirements, it is necessary to have an insight 
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into the behaviour of the system, especially in the data 

flow through the IoT system, from the moment when data 

are generated on the IoT sensing devices until the data are 

processed on each layer, in case of a multi-tiered 

architectural model, or at the core services, in case of 

Cloud processing model. This approach is very important 

in the design phase before an application is deployed in the 

real environment, to better understand system behaviour 

but also to choose the best communication technologies 

and communication models which will be used within the 

selected architecture model [10].  

Insight into the system behaviour can be achieved in 

two ways: by using real hardware and measurement 

equipment – which is in most cases very impractical [11] 

or by creating, or using already developed, simulation 

frameworks – this is a very efficient approach that speeds 

up the development of IoT architecture especially in case 

of large scale IoT applications [12], [13].  

Simulators allow researchers to provide a proof-of-

concept for new solutions in a virtual environment by 

avoiding time-consuming, heavyweight, or expensive real-

world experimentation [14]. Until now, different 

simulation frameworks have been developed to ease the 

process of designing IoT applications [15]. They can be 

classified into three categories: full-stack simulators, big 

data processing simulators, and network simulators [12]. 

Full-stack simulators, such as DPWSim [16] and iFogSim 

[17], provide a wide range of models for different IoT 

components but they are not capable of simulating 

scenarios that include the flow of a huge amount of data 

within IoT system. Big data processing simulators, such as 

IOTSim [18], focus on the big data processing within IoT 

applications but they do not enable precise implementation 

of IoT end devices models engaged in IoT architecture.  

Network simulators, such as NS3 [19] and CubCarbon 

[20], provide an insight into IoT behaviour from a 

functional aspect but they do not provide support for a 

detailed energy and scalability analysis of arbitrary IoT 

architectures.  

This paper presents a simulation framework that enables 

the simulation of data flow through any IoT application. It 

enables the easy development of large-scale distributed 

IoT applications. Also, it is possible to easily create an 

architecture for any IoT application, even for the 

application that deals with a huge number of IoT end 

devices. The developed framework enables the analysis 

and quantification of different IoT application parameters 

such as real-time performance parameters, IoT device 

consumption parameters, scalability of the architecture, 

etc. It is also possible to have an insight into data 

availability at any moment at any part of the IoT system 

architecture. This framework was originally presented in 

[26] while this paper presents a more detailed description 

of simulation framework core’s functionalities and also 

demonstrates framework overall capabilities in the field of 

IoT system scalability, energy and real-time analysis.   

The rest of the paper is organized as follows: Section II 

presents the developed simulator and describes the used 

model. In section III, on the example of multi-tiered IoT 

application, it is demonstrated how to quantify scalability 

of the architecture by using a developed simulation 

framework. Additionally, data availability time 

distribution is presented and analysed. In section IV, a 

conclusion is given with future work directions. 

II. SIMULATION FRAMEWORK DESCRIPTION 

The developed simulation framework enables the 

creation of arbitrary hierarchically organized architectures 

for a wide range of IoT applications. Within the 

framework, general models of components have been 

developed that makeup one IoT architecture in the general 

case. Using these models, it is possible to create an 

architecture for any IoT application. Within the first part 

of this section, the available general models, as well as 

their parameters, are described. In the second part of this 

section, the general technical characteristics of the 

developed simulator are presented. 

III. MODELS USED WITHIN SIMULATION FRAMEWORK 

To enable the simple creation of the IoT application 

architecture, and to examine the scalability properties of 

the designed architecture, a logical decomposition of the 

IoT architecture into basic building components is 

performed in this research. From a high-level perspective, 

most IoT architectures consist of devices that generate data 

and/or perform data processing, links that connect these 

devices, and protocols used to encapsulate the generated 

data and send it to the destination [21], [22]. According to 

this classification the following models are introduced in 

the simulator: node model, link model, and protocol 

model. Within all these models, it is possible to configure 

certain parameters to make the best representation of 

desired IoT application architecture. 

The Node model is introduced to represent devices 

within the IoT application that can produce and/or process 

or consume data. For example, in IoT applications, this 

model represents an IoT sensing node or smart network 

gateway. Two types of node models are supported within 

the simulation framework: producer node model and 

consumer node model. Consumer node model represents 

the device that is only capable of receiving, processing and 

optionally transmitting data to other nodes (if it is not the 

final node on the data path). For example, in real IoT 

applications, the consumer node model represents 

gateways that have capabilities to implement some data 

processing algorithm (for example, algorithms for data 

aggregation [23]). The producer node model represents a 

device, which is also capable of implementing simple data 

processing, but the main role of this model is to represent 

IoT devices that generate data with some predefined 

frequency. The list of parameters for consumer node and 

for producer node that can be configured within is 

presented in Table 1. 

The Link model enables the simulation of 

communication between architecture components, and it 

presents a high perspective representation of real physical 

communication links. Parameters which can be configured 

within this model are listed in Table 2. These parameters 

define communication performance based on knowledge 

of the communication model and communication 
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technology. They refer to physical layers, data links, 

network layer, application layer, etc. 

The protocol model defines a communication protocol 

between a producer and consumer device. The 

configurable parameters within this model are presented in 

Table 3. 
 

TABLE 1 - LIST OF THE CONFIGURABLE PARAMETERS FOR  

NODE MODEL 

Param. Name Description 

Supported by node 

model 

Producer Consumer 

PS - Processing 
speed [B/R] 

Defines data processing 

speed in bytes per time 

resolution 

Yes Yes 

CL - Compression 
Level 

Defines ratio for data 

reduction before they 

are sent from node 

Yes Yes 

AL - Aggregation 

Level  

Define how many data 
packets are stored on 

the node before they are 

sent 

Yes Yes 

DPC - Data 

processing 

consumption [mA] 

Current consumption 

when device is active Yes Yes 

LPC - Low-power 
mode consumption 

[mA] 

Current consumption 
when device is in low-

power mode 

Yes Yes 

SR - Sampling 
rate [R] 

Data generation 
frequency 

Yes No 

DS - Data size [B] Size of generated data  Yes No 

 

TABLE 2 - LIST OF CONFIGURABLE PARAMETERS FOR LINK MODEL 
Parameter name Description 

S - Speed [B/R] Link speed. Unit is bytes per time resolution 

MTU - MTU Size[B] Size of the link MTU 

TCT - Transceiver 

Consumption during 
Transmit [mA]  

Consumption when transmitting data from 

node  

 TCR - Transceiver 

Consumption during 

Receive [mA] 

Consumption when receiving data on the 

node 

 

TABLE 3 - LIST OF CONFIGURABLE PARAMETERS FOR  

PROTOCOL MODEL 
Parameter name Description 

O - Overhead size [B] Size of the overhead introduced in data 

processing  

ARQ - ARQ 

handshaking 

Defines whether response data packet will be 

generated when request packet is delivered 

on final node.  
 

IV. TECHNICAL DESCRIPTION OF THE SIMULATOR 

The developed simulation environment consists of two 

parts: GUI part [24] and the core application part [25] and 

results parser part. GUI part is written in the C# 

programming language, and it gives a user the ability to 

easily create the architecture of large-scale IoT 

applications. An overview of one GUI part, responsible for 

creation of the nodes, is presented in Fig. 1. 

Thanks to the developed GUI, users can easily create all 

nodes, links, and protocols. It is also possible to make the 

connection between the nodes by using the previously 

created link and it is possible to assign protocols to certain 

data which are produced on IoT end nodes and it is very 

easy to configure all model parameters listed in Tables 1-

3. When an IoT application architecture is created, 

configuration files are produced by the GUI. These files 

are used by the core of the simulation framework. 

 
Fig. 1. Simulator GUI. 

The core application of the simulation environment is 

written in the C programming language because it is time 

efficient. Especially, this is important in the case of large-

scale IoT applications where the number of nodes that are 

involved in simulation, can be very huge and simulation 

may execute for a very long time.  This core application as 

simulation input parameters takes configuration files 

produced by the GUI application. When a simulation is 

done, results are written in two types of log files: Node log 

file and System log file. 

For each node in the system, a separate Node log file is 

created. This file contains information like when data is 

created (in case of producer node), when data is received, 

when data processing is started, when data processing is 

ended and others. An example of one Node log file is 

presented in Fig. 2. 

Fig. 2. Part of the node log file. 

Each action on the node is sampled to one line in Node 

log file. There are two types of log lines in Node log file: 

LP- lines and A-lines. LP-line gives information about 

node status while node is in a Low-Power mode. A-line 

gives information about current data processing status and 

node status when node is in an active state.  

The first column for both log line types is the same and 

presents a timestamp of the action. Node log line type is 

written in the second column. In case of LP-line type, the 

third column marks whether a node exits from Low Power 

mode (EXIT), or a node enters a LP state (ENTER). The 

fourth column presents node consumption in a LP mode 

while the fifth column presents how much energy node 

consumes during Low-Power. In case of A-line the third 

column presents size of data that currently is processed on 

the node. The fourth column represents data state 

(request/response data created, processing data, processing 

data overhead, send data, receive data). Data ID is 

presented in the fifth column. Based on data ID it is 

possible to track specific data over network. From column 

6 to column 10 is listed additional node information 

related to data processing. Column 11 presents node 
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consumption during an active state while column 12 

presents energy consumption between a current and 

previous action on the node. 

One general simulation log file, System log file, is 

created and it shows when data are created and when data 

have arrived at the destination node. An overall system 

performance related to the data availability across the IoT 

system can be examined by analysing only this file.  

By examining these two types of created log files, it is 

possible to get an insight into data flow across the network 

and it is also possible to analyse different IoT application 

performances of interest such as nodes consumption, 

scalability, average data delivery time, real-time 

performance, etc. 

V. USE CASE 

As already mentioned, the developed simulation 

environment enables the analysis and quantification of the 

influence of different architecture parameters on the 

performance of IoT applications. In [26], we have 

presented the potential of developed simulation framework 

in the case of energy consumption analyses on end IoT 

nodes. 

The architecture of the multi-tiered IoT system, used in 

our example, is shown in Fig. 3. Within this section, we 

show the potential that the developed simulation 

environment has in the quantification of architecture 

scalability (section A) and distribution of data availability 

within the IoT network (section B). 

 

Fig. 3. Multi-tier IoT system architecture used in analysis. 

Presented architecture consists of 4 tiers. Each tier is 

composed of data processing devices that are introduced 

into the simulation by using a node model. Devices that 

belong to the same tier have the same characteristics, and 

accordingly, the parameters of the node model used in the 

simulation are also the same. There are Sx20 devices 

located at the first tier which produce data. For example, 

these devices present IoT sensing devices in real world 

environment.  

We have used the same architecture topology in section 

A to demonstrate the simulator capability in the scalability 

analysis of arbitrary architecture, and in section B to 

present the simulator capability to be used in data 

availability analysis.  

A. Scalability analysis 

IoT devices are introduced in simulation by using the 

model of producer node and they are in Tier 1. The second 

tier includes devices that process the data received from 

the lower-tier devices. For example, devices within this 

tier represent a smart gateway that is capable of 

implementing data size reduction algorithms to reduce the 

overall data flow through the system. These devices are 

introduced in simulation by using the model of consumer 

node. Each device located in tier 2 receives data from S 

devices in layer 1. The third layer consists of devices that 

are also modelled as consumer nodes. The devices of this 

tier additionally process the data received from the 5 

devices of the lower tier. The central device is the only 

device in the fourth tier, and it has the highest data 

processing speeds compared to all other devices that make 

up the IoT system. Each Tier’s parameters values are listed 

in Table 4. 

Link L1 is established between the first and second-tier 

devices. This link represents slow wireless communication 

links usually used within IoT sensing devices (Lora, NB-

IoT, GPRS, etc.). Between the second- and third-tier 

devices a link L2 is established which represents a wire 

link with a higher speed (for example, 10Mbps Ethernet 

link). L3 link is established between the third- and fourth-

tier devices and it is the fastest speed link in architecture 

(for example, 1Gbps Ethernet link). Each Link’s 

parameters values are listed in Table 5. 
 

TABLE 4 - VALUE OF NODE MODEL PARAMETERS IN ALL 

HIERARCHICAL TIERS 

Tier Model 
PS 

[MB/s] 

CL/AL DPC 

[mA] 

LPC 

[mA] 

SR 

[mA] 

DS 

[B] 

1 Node producer 1 1/1 40 10 2s 100 

2 Node consumer 1000 1/1 1000 200 x x 

3 Node consumer 10000 1/1 5000 500 x x 

4 Node consumer 100000 1/1 8000 900 x x 
 

TABLE 5 - VALUE OF LINK MODEL PARAMETERS 
Link type S [MB/s] MTU [B] TCT [mA] TCR [mA] 

L1 0.05 1500 400 400 

L2 1.25 1500 400 400 

L3 125 1500 400 400 
 

TABLE 6 - VALUE OF PROTOCOL MODEL PARAMETERS 
Protocol Overhead [B] ARQ 

P 70 Disabled 
 

The same protocol model is used over the entire IoT 

system architecture and its values are listed in Table 6. 

During analysis the number of S1 nodes (nodes located 

at the first tier that are connected to the same node at the 

second tier) is modified from 5 to 10000 while the number 

of S2-3 nodes remains constant: S2=5, S3=4.  Analysis is 

done to find the end limitation of the architecture for a 

specific sampling rate. Parameters of the protocol model 

used within the simulation are configured to achieve a 

push communication model [22]. In this communication 

model, data is sent from IoT sensing end device (node) to 

the server after they are produced. Results of the 

simulations for different S values are presented in Fig. 4. 

 

Fig. 4. Average data availability time. 
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It is expected that for a required sampling rate and 

selected architecture, there is a limitation in terms of the 

maximum number of nodes in architecture. Fig. 4 present 

results obtained after simulation over IoT architecture 

from Fig. 3. It is noticeable that our architecture for a 

required sampling rate and amount of generated data has 

limits in terms of scalability. The maximum number of 

producer nodes supported by this IoT architecture is near 

S1 x 20 = 6800 x 20 =136000 nodes. 

B. Data availability distribution analysis 

This analysis was done on the same IoT architecture as 

the system architecture in analysis and model’s parameters 

values of the IoT system architecture are the same as the 

values presented in Tables 4 and 5.  

The IoT system topology considered in this analysis has 

a fixed number of devices in the lowest hierarchical layer 

and is 100. Data within this IoT system are produced 

exclusively from sides of the device from the lowest 

hierarchical layer with a period of 2s. All devices generate 

100B packets. Within this analysis, the distribution of data 

availability on the central device within the fourth 

hierarchical layer was observed. 

In this analysis we present the distribution of data 

availability for two classes of applications.  

Class 1: with this class of applications, it is necessary to 

observe the time required for the data to arrive at the 

destination node and the time required for the response 

from the destination node to reach the node that generated 

the data.  

Class 2: this class of applications includes applications 

whose work is based on the availability of data at the 

destination node. This means that in these applications, the 

time required for the data to reach the destination node 

should be observed until the path time to the source is 

considered. 

To achieve described applications behaviour, different 

protocol model parameters are used within a certain 

application class. These model parameters values are listed 

in Table 7. 
 

TABLE 7 – APPLICATION CLASSES PROTOCOL’S MODELS 

PARAMETERS VALUES 
Application class Protocol Overhead [B] ARQ 

1 P1 70 Enabled 

2 P2 70 Disabled 
 

Data availability time is considered as the main 

parameter for profiling the performance of dedicated 

applications that run on a distributed dedicated system. 

Data availability times are calculated differently for 

different application classes. Data availability time for 

Class 1 applications is the time it takes for the data to 

reach the destination node, to be processed at the 

destination node, to generate a response, and to return the 

response from the destination node to the node from which 

the data was generated. For Class 2 applications, the data 

availability time is the time it takes for the generated data 

to reach the destination node and be processed at the 

destination node.  

Since during the data path, and during the data 

generation, there are certain deviations in terms of link 

speeds and data generation periods, during the simulation 

it is not possible for data on nodes to appear at precisely 

defined time intervals and their availability on a node 

cannot be accurately predicted. Deviations in the system 

occur since data on a node is generated with a period that 

deviates from the defined period by a defined percentage. 

This deviation was introduced into the simulation to 

simulate timing asynchrony on geographically dislocated 

processing devices, which is often the case in distributed 

dedicated systems. In addition to non-synchronization in 

terms of data generation periods, link models support a 

parameter that defines the limit of deviation of link speed 

from the defined speed. All the above deviations have the 

task of simulating the phenomena in real purpose systems 

as closely as possible. 

As already mentioned, all these deviations lead to the 

fact that it is not possible to predict exactly when data is 

available and when the application can use it, but it is 

necessary to observe the function of distribution of data 

availability and extract information of interest. The 

distribution functions for one system architecture and for 

the two observed application classes are given in Fig. 5. 

During the analysis of results, it was assumed that the 

data are available on the node at the time when 99 percent 

of the generated data will be available. This time will be 

marked as T99 parameter in the continuation of the 

analysis. The red dot on the graphic indicates that time for 

some arbitrary architecture. 

(a)

 

(b)

 

Fig. 5. (a) Distribution of data availability for class 1 

applications, (b) Distribution of data availability for class 

2 applications. 

In addition to the data availability distribution on a 

node, in determining the performance of a system, it is 

sometimes easier to observe the data availability integral 

of the two application classes shown in Fig. 6. If the 

distribution integrals from Fig. 6 are observed, it is easier 

to determine the value of the parameter T99. 
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VI. CONCLUSION 

The proposed simulation framework supports the 

investigation of operational performance of multi-tier IoT 

system, introducing a set of features for modelling data 

processing and communication across the system 

architecture. Framework capabilities include the analysis 

of data availability, system scalability, and energy 

consumption under different communication and 

deployment scenarios. The case study of large-scale IoT 

deployment was given to demonstrate the framework 

capabilities and to describe the simulation process. 

Distribution of data availability in a multi-tier IoT system 

and the supported scalability analysis under the 

performance constraints can be used to reveal the 

limitations of the IoT system deployment.  

As part of further research, we plan to additionally 

improve the simulation framework in the domain of user 

experience regarding system architecting, component 

modelling, parametric analysis, and in improving the 

processing performance of simulator core. 

(a)

 

(b)

 

Fig. 6. Integral data distribution allocation (a) for class 1 

application, (b) for class 2 application. 
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