
Telfor Journal, Vol. 4, No. 1, 2012. 43

1
Abstract — Graphics processing units (GPUs) have been

increasingly used for general-purpose computation in recent
years. The GPU accelerated applications are found in both
scientific and commercial domains. Sorting is considered as
one of the very important operations in many applications, so
its efficient implementation is essential for the overall
application performance. This paper represents an effort to
analyze and evaluate the implementations of the
representative sorting algorithms on the graphics processing
units. Three sorting algorithms (Quicksort, Merge sort, and
Radix sort) were evaluated on the Compute Unified Device
Architecture (CUDA) platform that is used to execute
applications on NVIDIA graphics processing units.
Algorithms were tested and evaluated using an automated
test environment with input datasets of different
characteristics. Finally, the results of this analysis are briefly
discussed.

Keywords — CUDA, data sorting, graphics processing
units, parallel processing, parallel programming.

I. INTRODUCTION

ATA sorting is a very frequent and compute-intensive
operation, so its efficient implementation is of great

importance in contemporary applications. It is one of the
most studied activities, since the sorting algorithms are
used in various domains and could be considered as the
building blocks of more complex algorithms. There are
many efficient sequential implementations, but with the
emergence of contemporary parallel architectures, such as
multicore central processing units (CPUs) or manycore
graphics processing units (GPUs), the parallel
implementations have been increasingly important.

In the past several years, significant improvements in
multiprocessor architectures have been made. A very good
example of such an evolution is the advance in the GPU
field. In the early years, the GPUs have been specialized,
fixed-function processors used primarily for 3D graphics
rendering. Nowadays, the GPUs are highly parallel,
multithreaded processor arrays capable of the execution of
general-purpose, compute-intensive computations.

Numerous papers report high speedups obtained in
various GPU accelerated applications. Sorting operations
are the core parts in many of them, since these operations
are used to optimize search and merging activities, to

This work has been partially funded by the Ministry of Education and

Science of the Republic of Serbia (III44009 and TR32039). The authors
gratefully acknowledge this financial support.

Marko J. Mišić is with the School of Electrical Engineering,

University of Belgrade, Serbia (phone: 381-11-3218-392; e-mail:
marko.misic@etf.bg.ac.rs).

Milo V. Tomašević is with the School of Electrical Engineering,
University of Belgrade, Serbia (phone: 381-11-3218-392; e-mail:
mvt@etf.bg.ac.rs).

produce human-readable form of data, etc. Sorting
operation is not only a part of many parallel applications,
but also an important benchmark for parallel systems. It
consumes a significant bandwidth for communication
among processors since highly rated sorting algorithms
access data in irregular patterns [1]. This is very important
for the GPUs, since they need many calculations per one
memory access to achieve their peak performance. Sorting
algorithms usually do not have high computation to global
memory access ratio, which puts the emphasis on
algorithms that access the memory in favorable ways.

The goal of this paper is to present a short survey and
performance analysis of sorting algorithms on graphics
processing units. It presents three representative sorting
algorithms (quicksort, merge sort, and radix sort)
implemented using the CUDA platform to execute on
modern GPUs. These algorithms were chosen for
evaluation because they are known to a wider research
community and their inherent characteristics allow
efficient implementation on the GPUs.

The rest of the paper is organized as follows. The
second section presents a short history of modern GPUs,
and presents an overview of the CUDA platform that
exploits the GPU computing power for general purpose
computation. The third section covers some general
sorting topics and briefly reviews related work in the field
of sorting algorithms on the GPUs. The fourth section
concentrates on the implementations of chosen sorting
algorithms. Automated test environment and testing
methodology are described in the fifth section with the
emphasis on the input datasets used for performance
evaluation. The sixth section presents and discusses
experimental results. The final section draws some
conclusions and proposes future work.

II. GENERAL PURPOSE COMPUTATION ON GPUS

From the early days of their existence, the GPUs have
been used for specialized, compute-intensive computations
in the domain of computer graphics. Over the time, the
GPUs offered programmability to some extent, through
graphics application programming interfaces (APIs), such
as OpenGL. Even at that point, some researchers tried to
use an abundant computational power of those processors
in general, non-graphics computations, which is described
in [2] and [3]. It was clearly proved that the GPUs are
especially good at data-parallel processing in certain
domains, so that led to rapid development of the GPU
architectures. The GPUs evolved to programmable, highly
parallel multiprocessors with considerable computational
power and high bandwidth, an order of magnitude higher
than those of the contemporary CPUs. Unlike the CPUs,

Data Sorting Using Graphics Processing Units

Marko J. Mišić and Milo V. Tomašević

D

44 Telfor Journal, Vol. 4, No. 1, 2012.

the GPUs have more transistors devoted to data processing
rather than to data caching and sophisticated flow control.
The GPU is a suitable platform for all compute-intensive
problems that exhibit high regularity.

CUDA (Compute Unified Device Architecture) is a
parallel computer architecture developed by NVIDIA. It
significantly simplified the use of the GPUs for
non-graphics purposes through its programming model
and an extension of C language. For non-graphics
computations, CUDA exposed a generic parallel
programming model in a multithreaded environment, with
support for synchronization, atomic operations, and eased
memory access. Programmers do not need to use the
graphics API anymore to execute non-graphics
computation.

Typically, the CUDA programs are executed in
coprocessing mode, where the GPU serves as a
coprocessor to the CPU and accelerates the most time
consuming parts of the application. The sequential parts of
the application are executed on the CPU (host) and the
compute-intensive parts are executed on the GPU (device).
The applications are programmed through a simple API
and C language extensions that target the parts of the code
executed on the device.

The CPU initiates the execution on the device, being
also responsible for data management and device
configuration. The parallel parts of the application are
executed on the device as special functions (kernels) called
from the CPU side. A kernel is run in parallel by batches
of lightweight threads executed on the processing units
called streaming multiprocessors. To maintain scalability,
a kernel execution is organized as a grid of thread blocks,
as shown in Fig. 1. Every kernel is called with execution
configuration that specifies the number of thread blocks in
the grid and the number of threads in every thread block.

CUDA offers the dedicated memory hierarchy to
support fast, parallel execution. All threads can access the
global memory of the device. Global memory accesses are
slow, so CUDA offers other smaller memories in the
hierarchy to speed up the execution. Thus, threads have
access to registers, local memory, shared memory,
constant memory, texture memory, and global memory.

Threads in the same block can cooperate through a very
fast shared memory and use barrier synchronization to
coordinate their execution. Threads from different thread
blocks cannot cooperate, since they may or may not
execute on the same streaming multiprocessor. So, global
synchronization is achieved only through repeated kernel
calls, and that is one of the significant disadvantages of the
CUDA platform that strongly affects the algorithm design.
More information about the general-purpose computation
on the GPUs and CUDA platform could be found in [4]
and [5].

III. SORTING ON THE GPUS

Sorting is one of the most widely studied areas in the
field of computer science. Lots of interesting and diverse
solutions to this problem are proposed, but the advances in
architectures make this topic still active. The raw
processing power of graphics processing units attracted
researchers, so some very efficient solutions, such as [6]
and [7], were implemented even in the early days of GPU
computing, when non-graphics applications were
implemented using the graphics API.

Two approaches are commonly used in parallel sorting,
as described in [8]. The merging approach sorts equally
sized tiles locally in parallel, before proceeding recursively
with a merge operation until the entire input array is
sorted. On the contrary, the distribution approach reorders
the keys globally into the buckets, such that all keys from
one bucket are greater than those in the previous bucket
and smaller from the ones in the next bucket. The
procedure is carried on recursively on the buckets and the
buckets are concatenated into the final sorted order.
Quicksort and radix sort are the basic examples of the
distribution sort algorithms, while merge sort is an
example of the merging approach.

A. Sequential Algorithms

Quicksort is a divide-and-conquer algorithm which
recursively splits the unsorted array into two partitions
separated with the pivot element where the lower partition
consists of the elements smaller than the pivot while the
upper partition consists of the elements greater than the
pivot. Since the partitions are independent, the algorithm
could proceed with the same procedure in parallel,
recursively, until all partitions collapse to a single element
when the array is sorted.

Merge sort takes the advantage of the ease of merging
shorter sorted sequences into a longer sorted sequence.
Merge sort employs the merge operation to sort a
sequence. It starts by comparing every two elements in the
sequence and putting them in the correct order. It then
merges each of the resulting sequences of two into the
sequences of four and repeats the merging operation, and
so on, until last two sorted sequences are merged into the
final sorted sequence. Merge operation exhibits inherent
parallelism, since it could be done through a merge tree.

Radix sort algorithm is based on the representation of
keys as b-bit integers. This algorithm sorts the keys by
examining groups of r bits in each pass, resulting in b/r

Fig. 1. CUDA execution model.

Mišić and Tomašević: Data Sorting Using Graphics Processing Units 45

passes in total. In every pass, keys are classified into
buckets and the input sequence is reordered. Internally,
radix sort often uses the counting operation to sort a
sequence in each pass. The counting operation is used to
obtain the number of elements in every bucket depending
on the group of bits being processed. Efficient
implementation of the counting operation is the core part
of the parallel radix sort algorithm.

B. Towards GPU Implementations

Quick sort and merge sort are comparison-based
algorithms, while radix sort works on the bitwise
representation of the keys. The comparison-based
algorithms usually switch to some other strategy when a
tile or bucket fits into the processor cache line or shared
memory on the GPUs [8]. That fact revived some old,
inherently parallel ideas, like bitonic networks [9], so the
bitonic sorting is a preferable choice for many algorithms
in their beginning or final stages.

Many GPU sorting algorithms use some parallel
primitives to perform the sorting operation. Two very
commonly used primitives are parallel reduction and
parallel prefix sum (scan) operation. Parallel reduction
operation reduces an array of values to a single value yi =
x0 ⊕ x1 ⊕ …⊕ xn, given some binary operator ⊕. Scan
operation [10] takes an input of n elements (x0,..xn-1) and
produces an output (y0,..yn-1), where yi = x0 ⊕ x1 ⊕ …⊕ xi.
Output can include or exclude the element xi, and ⊕ is a
binary operator.

C. Related Work

First attempts to implement an efficient sorting
algorithm using the innovative CUDA architecture were
made by Harris et al. to demonstrate their implementation
of the efficient scan primitive [11]. They implemented
radix sort and a hybrid merge sort algorithm. Cederman
and Tsigas implemented GPU quicksort algorithm [12]
with a three-level strategy, described in Section IV.A.
Satish et al. demonstrated even faster merge sort and radix
sort, published in [13]. They implemented an efficient
parallel merge operation, described in Section IV.B.
Leischner et al. developed the comparison-based sample
sort [14] that outperforms the merge sort of [13] for about
30% for 32-bit integer keys. Dehne and Zaboli
implemented the deterministic sample sort with similar
results for uniformly distributed data [15].

Researchers paid even more attention to radix sort.
Bandyopadhyay and Sahni developed the radix sort
algorithm (GRS - GPU radix sort) suitable for sorting
records with many fields [16]. Merrill and Grimshaw
further improved the scan operations, which resulted in a
highly optimized radix sort. At present, it is claimed to be
the fastest GPU radix sort for 32-bit integers [17].

IV. PARALLEL IMPLEMENTATIONS OF
SORTING ALGORITHMS

Although numerous papers reported various
improvements in the domain of sorting algorithms (as
reported in Section II), only several implementations are
publicly available, and thus could be used for comparative

analysis and evaluation. Quicksort implementation of
Cederman and Tsigas [12] is the only publicly available
quicksort implementation, although Harris et al. [11] also
implemented quicksort to demonstrate the usage of their
scan primitives. The only merge sort implementation
available is a part of the Thrust library [18]. The Radix
sort implementations are available through CUDPP library
[19] and NVIDIA GPU Computing SDK, both based on
the work of Harris et al. We have chosen CUDPP
implementation for testing, because it is better supported
for various key types. The main algorithm charcteristics
are described in the following sections.

A. Quicksort

The general approach of this algorithm follows the
guidelines given in Section III.A, but takes into account
specific execution on a manycore processor like the GPU.
The algorithm recursively divides the unsorted array into
more and more progressively smaller partitions until the
entire array is sorted. Every partition operation results in
moving all elements less than a pivot to the positions left
of the pivot and all elements greater than a pivot to the
positions right of it. In every iteration of the partition
operation a new pivot element is chosen and two new
partitions are created that can be independently sorted. The
partition operation is repeated until there are enough
partitions to assign to one thread block. Then, a thread
block can efficiently sort the assigned partition in the per-
block shared memory. Since the thread blocks need to
cooperate before they create enough independent
partitions, the algorithm consists of two similar phases.

In the first phase, many thread blocks work together on
the unsorted array. The only way to synchronize the
threads from different thread blocks is through repeated
kernel calls. The kernel calls are not an expensive
operation on the GPU, but still not negligible, so they are
used a minimal number of times. In the second phase,
every thread block works on the given part of the array
which consists of the elements greater than in the previous
block and smaller than in the next thread block. Since
there is no need for thread block synchronization, the
second phase is entirely executed in one kernel call.

Both phases use the scan operation to determine the
final position of an element in each phase. During the
partition operation, every thread block counts the number
of elements smaller than pivot and the number of elements
greater than pivot for the given subsequence. Then, scan
operation is performed and prefix sums are calculated for
every element assigned to the thread. Additionally in the
first phase, a global prefix sum across all blocks is
calculated, in order to determine the final position of every
element. At the end of iteration, the elements are reordered
to their new positions in the array. In the final stage of the
second phase, when subsequences are smaller than 1024
elements, the algorithm changes the strategy and uses
bitonic sort to sort the remaining sequence. This is done
because the overhead of the partition operation becomes
too high.

46 Telfor Journal, Vol. 4, No. 1, 2012.

On conventional processor architectures, it is desirable
to perform in-place sorting, since it exploits spatial locality
and makes better utilization of the cache memory. Since
the GPUs do not have a cache memory in a traditional
way, the sorting is not done in-place. Also, the in-place
sorting would impose the synchronization of threads
during memory access, which is expensive on GPU
architectures. Instead, an additional buffer space is used,
which enables the performance benefits from coalesced
reads and writes. In each iteration, data is read from the
primary buffer and the result is written to the auxiliary
buffer. Then the two buffers switch places. A similar case
is with the following algorithms.

B. Merge Sort

Since the direct manipulation of keys is not always
allowed in the sorting operation, one alternative is to use
an efficient comparison-based algorithm. A viable solution
is to use divide-and-conquer merge sort, which is proved
to be efficient on traditional architectures. Also, the merge
operation is a frequent parallel primitive, so several
implementations of merge operation could be found in the
literature, and [13] gives a good overview of those
techniques. The GPU execution can exploit fine-grain
parallelism, so the implementations should be tuned
accordingly.

Merge sort is frequently used as an external sorting
algorithm, where the sequence being sorted is stored in a
large external memory and the processor has direct access
only to a much smaller memory [13]. A similar case is
with the GPUs, since they have a large, but slow, global
memory (up to 6 GB DRAM) and a small, on-chip shared
memory (16 or 48 KB, depending on the configuration).
Access time to a global memory is usually around 200
cycles, while shared memory access time is 3 to 4 cycles.
This is the reason we need to split the data into blocks that
fit into the shared memory, to sort it locally and then to
move the data out. The whole process should be repeated
as long as it is needed to sort the given sequence.

A merge sort algorithm consists of three phases. In the
first phase, the input data are split into p equally sized
blocks. In the second phase, all p blocks are sorted using p
thread blocks (usually 256 threads each). In the final
phase, sorted blocks are merged into the final sequence.
On the block level, an alternative sorting method is used.
At first, authors experimented with the common bitonic
sort algorithm, but then they switched to odd-even merge
sort as the authors claim that it is 5-10% faster in practice
[13]. The most intensive part of the algorithm is the merge
operation. The merge operation is implemented through a
pair-wise merge tree, but since the number of pairs to be
merged decreases geometrically, it was of great
importance to implement the merge operation in such a
way that would exploit fine-grain parallelism rather than
the coarse-grain parallelism inherent to the merge tree.

The merging process is outlined as follows. If we have
two sorted sequences A and B, each less than 256
elements in size, we can merge them using only one thread
block. Since A and B sequences are accessed fairly

randomly during the merging process, it is very important
that sequences should fit into the fast shared memory.
Each thread in the block takes an element from the A
sequence and then determines the rank (position) of that
element in the merged sequence. Since both A and B
sequences are sorted, the final rank is easily determined
using the rank of the element in the A sequence and
parallel binary search to determine the rank of the same
element in the B sequence. The elements of B sequence
are merged in the same way.

If there are more than 256 elements in A and B
sequences, they are split into a set of subsequences, using
splitter elements. The splitters are chosen from the two
sequences such that the interval between two successive
splitters is small enough to be merged by a thread block.

C. Radix Sort

Radix sort assumes that the keys are d-digit numbers
and sorts the sequence by processing one digit of the keys
at a time, from the least to the most significant digit. To
sort the digits within each of the d passes, counting sort or
bucket sort are typically used. As described in Section
III.A, an efficient radix sort implementation is heavily
dependent on the counting operation. The counting
operation is easy to parallelize on the GPUs, since it is
efficiently supported with scan operations. However, it is
of great importance to implement the operation in such a
way as to utilize the fast shared memory.

This implementation processes 4-bit digits, so 8 passes
are needed to sort 32-bit integers. In every pass of the
algorithm, keys are reordered according to a processed
digit. In order to do so, it is needed to determine the new
rank (position) of each key in the sequence. The rank is
determined by counting the number of keys less or equal
but occurring earlier in the sequence than a given key.
After all ranks are determined, keys are scattered to new
positions in the sequence, and the process continues. This
counting preserves the relative ordering of keys with
equal digits, so sorting each digit from least to most
significant is guaranteed to leave the sequence correctly
sorted after all d passes are complete [13].

As key reordering is typically the process with an
irregular memory access pattern, every pass is
implemented in four steps, and utilizes a shared memory in
order to avoid expensive global memory accesses. In the
first step, a thread block locally reorders a given tile using
the bit-split operation according to the digit being
processed. Then, a histogram is computed for each tile
counting the occurrences of the 2b possible digits in the
given tile. In the third step, prefix sums of the histograms
of all tiles are computed, and finally, keys are reordered to
their final positions using the computed prefix sums.

This approach has several advantages. It utilizes a
global memory bandwidth efficiently, by minimizing the
number of scatters to a global memory and maximizing the
coherence of scatters. The coherent accesses (coalesced
reads and writes) to the global memory are an important
factor, since they can improve the bandwidth up to 10
times. The number of scatters to a global memory is

Mišić and Tomašević: Data Sorting Using Graphics Processing Units 47

reduced by tiling (blocking of data) and using the higher
radix (b > 1). Coherent accesses are achieved by locally
reordering a given tile of data in the shared memory.
Furthermore, this implementation uses 256 threads per
thread block. One thread is given four elements to process,
so one thread block is in charge of 1024 elements.
Although it would be more logical to give every thread
only one element, experiments have shown that this way
every thread has a bit more sequential work to do, thus
hiding the memory latency better.

V. EVALUATION ENVIRONMENT

The testing and evaluation of the implemented
algorithms was carried on in an automated environment,
described in detail in [21]. This environment consists of
several components that implement the different aspects
needed to test and evaluate sorting algorithms. It includes
a pseudorandom generator of different data distributions,
the components for time measurment, regression testing to
check the correctness of the results, and storing of the
results of the experiments.

A. Input Dataset

Input data distribution is the characteristic that must be
considered especially, since it can affect the algorithm
performance. Sorting performance could heavily depend
on the input data distribution, so a careful generation of
test arrays is very important. Typically, the performance of
algorithms that process a binary representation of keys,
such as different variants of radix sort, is dependent on the
key length. Some algorithms, such as quicksort, are
sensitive to a non-uniform distribution in input arrays,
especially when the number of different keys is limited.
Also, some algorithms like merge sort can benefit from the
presortedness of the input arrays, so all those
characteristics were kept in mind when input data sets
were chosen. Consequently, the evaluation was conducted
using seven different data sets:

1. 16-bit and 32-bit keys of uniform distribution;
2. 32-bit integers of Gaussian distribution;
3. Few unique keys arrays;
4. Nearly sorted arrays;
5. Sorted and reverse sorted arrays.
Since other data distributions could be derived from the

uniform distribution, such as normal distribution, it was of
great importance to find a good pseudorandom generator.
Also, the pseudorandom generator should be fast enough,
since test arrays can have millions of elements. Mersenne
Twister [20] was used in our experiments. It provides fast
generation of very high-quality pseudorandom number,
with a period of 219937-1.

B. Evaluation Methodology

The evaluation was done within our automated test
environment. Every algorithm was run four times with
different input arrays of different sizes. The array size was
varied from 1K to 10M elements. After every sorting
operation, a regression test was done, in order to check the
correctness of every algorithm. A regression test is done
using quicksort implementation (qsort) from the standard
C library. Test results were stored in the CSV (Comma
Separated Values) file, according to the previously defined
format and then processed using MS Excel.

Windows XP OS was used to test the algorithms on the
machine with processor Core 2 Duo E7600 3.06GHz and 4
GB RAM. CUDA programs were executed on the NVIDA
GeForce GTS 250 with 512MB RAM using CUDA driver
version 2.3.

VI. EXPERIMENTAL RESULTS

After automated experiments were conducted, results
were processed and analyzed. Fig. 2 shows a performance
comparison of three algorithms for different data
distributions. Generally, radix sort exhibits the best and
most stable performance. This was expected, since this
algorithm works on the binary representation of keys, and
typically outperforms comparison-based algorithms for
shorter keys. Quicksort and merge sort show a similar
performance, but quicksort is more sensitive to input data
distributions, especially for those with a limited number of

Fig. 2. Performance of the GPU sorting algorithms for
different data distributions; 1 – 16-bit uniform

distribution, 2 – 32-bit uniform distribution, 3 – Gaussian
distribution, 4 – Few unique keys, 5 – Nearly sorted
arrays, 6 – Sorted arrays, 7 – Reverse sorted arrays.

Fig. 3. Performance comparison of the GPU sorting
algorithms and sequential (qsort) algorithm.

CUDA / 10M elements

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

Distributions

T
im

e
[m

s]

Mergesort
Quicksort
Radixsort

CUDA sorts

0,1

1

10

100

1000

10000

1000 10000 100000 1000000 10000000

Size

T
im

e
[m

s]

Mergesort
Quicksort
Radixsort
Qsort (stdlib)

48 Telfor Journal, Vol. 4, No. 1, 2012.

keys. It is a known drawback of the sequential quicksort
algorithm, and it adheres to the GPU implemention to
some extent, as well. Despite these performance pitfalls,
the GPU algorithms are much less dependent on the input
data distribution than their sequential implementations or
their counterparts on other parallel platforms, like Message
Passing Interface (MPI) or Pthreads [21]. This is mostly
due to data-parallel nature and Singe Instruction Multiple
Data (SIMD) execution of applications on the GPUs. The
GPUs are manycore processors, and thus expose much
finer granularity, so the applications could be tuned in a
more sophisticated way.

Fig. 2 shows one more interesting fact. Standard C
library sort function, qsort, is more efficient than the GPU
implementations for short arrays, typically under 10K
elements. In order to execute the applications on the GPU,
we need to take some preparatory steps during the launch
of the kernel. Also, memory transfers from CPU to GPU
memory and vice-versa are proved to be costly, too. So,
there is an amount of parallel overhead involved in the
execution of every GPU algorithm. That time dominates in
the overall execution time for smaller-sized arrays, while it
is amortized for larger arrays.

Since one of the goals of parallel computing is to solve
demanding problems within a given amount of time [4], a
programmer should always be aware of the dimension of
the problem to be solved, and choose a suitable algorithm
accordingly. Because of the parallel overhead, which is
inherent to parallelization process, the dimension of the
problem should be large enough in order to obtain the
benefit from parallel execution. Hybrid solutions that
utilize both multithreading on the CPU and the GPU,
depending on the problem size, could be developed and
tuned empirically if there is a need to cover a wide range
of input data sizes.

VII. CONCLUSION AND FUTURE WORK

Modern graphics processing units provide an abundant
processing power and the observed speedup could be an
order of magnitude higher depending on the problem to be
solved. On the other hand, CUDA technology offers the
programming of the GPUs through a general API, which
in turn considerably eases the use of the GPUs for
general-purpose computations.

Sorting algorithms can achieve a good performance and
scalability on the GPUs. Observed execution times are
3-5x higher than those of the sequential implementations,
which is very important for this bandwidth consuming
operation. On the other hand, the GPU implementations
are more complex, typically several hundred lines of code,
and not easy to understand and maintain. Thus, it is
recommended to use available implementations, as they
are quite sufficient for the majority of applications. From
the platform point of view, the GPU implementations are
much better than others as they offer a very good
price-performance ratio.

Future work is envisaged in two directions. The first
direction is to enhance the evaluation environment by
including more diverse test cases. Those would include

floating point keys, various key lengths (from 8-bit to
64-bit), and new data distributions, like staggered arrays
and distributions with different key entropy levels. The
other direction is to include some other implementations of
the GPU sorting algorithms, such as sample sort or
improved versions of radix sort.

REFERENCES

[1] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J.
Smith, and M. Zagha, “An Experimental Analysis of Parallel
Sorting Algorithms,” Theory Comput. Systems 31, pp. 135–167,
1998.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, “A Survey of General-Purpose
Computation on Graphics Hardware,” Computer Graphics Forum,
vol. 26, no. 1, pp. 80–113, 2007.

[3] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J.
C. Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 879–899, 2008.

[4] D. B. Kirk and W. M. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

[5] „NVIDIA CUDA C Programming Guide“, version 4.0, NVIDIA
Corporaton, 2011.

[6] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha,
“GPUTeraSort: High Performance Graphics Coprocessor Sorting
for Large Database Management,” Proceedings of the 2006 ACM
SIGMOD international conference on management of data, pp.
325–336, 2006.

[7] A. Greba and G. Zachmann, “GPU-ABiSort: optimal parallel
sorting on stream architectures,” Proceedings of the 20th IEEE
International Parallel and Distributed Processing Symposium,
pp. 27, 2006.

[8] N. Leischner, “GPU algorithms for comparison-based sorting and
merging based on multiway selection,” M.S. thesis, Karlsruhe
Institute of Technology, 2010.

[9] K. E. Batcher, “Sorting networks and their applications,”
Proceedings of the AFIPS Spring Joint Computer Conference 32,
1968.

[10] G. E. Blelloch, “Prefix Sums and Their Applications,” Synthesis of
Parallel Algorithms, Morgan Kaufmann, pp. 35–60, 1990.

[11] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens, “Scan
primitives for GPU computing,” Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on graphics hardware,
pp. 97–106, 2007.

[12] D. Cederman and P. Tsigas, “A Practical Quicksort Algorithm for
Graphics Processors,” Technical Report 2008-01, Chalmers
University of Technology, Sweeden, 2008.

[13] N. Satish, M. Harris, and M. Garland, “Designing Efficient Sorting
Algorithms for Manycore GPUs,” Proceedings of the 2009 IEEE
International Symposium on Parallel and Distributed Processing,
pp. 1–10, 2009.

[14] N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,”
Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1–10, 2010.

[15] F. Dehne and H. Zaboli, “Deterministic Sample Sort For GPUs,”
CoRR, abs/1002.4464, 2010.

[16] S. Bandyopadhyay and S. Sahni, “GRS - GPU Radix Sort for Large
Multifield Records,” International Conference on High
Performance Computing (HiPC), pp. 1–10, 2010.

[17] D. Merrill and A. Grimshaw, “Revisiting Sorting for GPGPU
Stream Architectures,” Technical Report CS2010-03, University of
Virginia, USA, 2010.

[18] Project „Thrust 1.1“, 2010., http://code.google.com/p/thrust/
[19] Project „CUDPP – CUDA Data Parallel Primitives Library 1.1“,

2008., http://gpgpu.org/developer/cudpp
[20] M. Matsumoto and T. Nishimura, „Mersenne Twister: A 623-

dimensionally equidistributed uniform pseudorandom number
generator,” ACM Trans. on Modeling and Computer Simulation
Vol. 8, no. 1, pp. 330, 1998.

[21] M. Mišić, “Comparative analysis of parallel sorting algorithms on
different parallel platforms,” M.S. thesis, School of Electrical
Engineering, University of Belgrade, Belgrade, 2010. (in Serbian)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

