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Abstract — Graphics processing units (GPUs) have been 

increasingly used for general-purpose computation in recent 
years. The GPU accelerated applications are found in both 
scientific and commercial domains. Sorting is considered as 
one of the very important operations in many applications, so 
its efficient implementation is essential for the overall 
application performance. This paper represents an effort to 
analyze and evaluate the implementations of the 
representative sorting algorithms on the graphics processing 
units. Three sorting algorithms (Quicksort, Merge sort, and 
Radix sort) were evaluated on the  Compute Unified Device 
Architecture (CUDA) platform that is used to execute 
applications on NVIDIA graphics processing units. 
Algorithms were tested and evaluated using an automated 
test environment with input datasets of different 
characteristics. Finally, the results of this analysis are briefly 
discussed. 

Keywords — CUDA, data sorting, graphics processing 
units, parallel processing, parallel programming. 

I. INTRODUCTION 

ATA sorting is a very frequent and compute-intensive 
operation, so its efficient implementation is of great 

importance in contemporary applications. It is one of the 
most studied activities, since the sorting algorithms are 
used in various domains and could be considered as the 
building blocks of more complex algorithms. There are 
many efficient sequential implementations, but with the 
emergence of contemporary parallel architectures, such as 
multicore central processing units (CPUs) or manycore 
graphics processing units (GPUs), the parallel 
implementations have been increasingly important. 

In the past several years, significant improvements in 
multiprocessor architectures have been made. A very good 
example of such an evolution is the advance in the GPU 
field. In the early years, the GPUs have been specialized, 
fixed-function processors used primarily for 3D graphics 
rendering. Nowadays, the GPUs are highly parallel, 
multithreaded processor arrays capable of the execution of 
general-purpose, compute-intensive computations. 

Numerous papers report high speedups obtained in 
various GPU accelerated applications. Sorting operations 
are the core parts in many of them, since these operations 
are used to optimize search and merging activities, to 
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produce human-readable form of data, etc. Sorting 
operation is not only a part of many parallel applications, 
but also an important benchmark for parallel systems. It 
consumes a significant bandwidth for communication 
among processors since highly rated sorting algorithms 
access data in irregular patterns [1]. This is very important 
for the GPUs, since they need many calculations per one 
memory access to achieve their peak performance. Sorting 
algorithms usually do not have high computation to global 
memory access ratio, which puts the emphasis on 
algorithms that access the memory in favorable ways. 

The goal of this paper is to present a short survey and 
performance analysis of sorting algorithms on graphics 
processing units. It presents three representative sorting 
algorithms (quicksort, merge sort, and radix sort) 
implemented using the CUDA platform to execute on 
modern GPUs. These algorithms were chosen for 
evaluation because they are known to a wider research 
community and their inherent characteristics allow 
efficient implementation on the GPUs. 

The rest of the paper is organized as follows. The 
second section presents a short history of modern GPUs, 
and presents an overview of the CUDA platform that 
exploits the GPU computing power for general purpose 
computation. The third section covers some general 
sorting topics and briefly reviews related work in the field 
of sorting algorithms on the GPUs. The fourth section 
concentrates on the implementations of chosen sorting 
algorithms. Automated test environment and testing 
methodology are described in the fifth section with the 
emphasis on the input datasets used for performance 
evaluation. The sixth section presents and discusses 
experimental results. The final section draws some 
conclusions and proposes future work. 

II. GENERAL PURPOSE COMPUTATION ON GPUS 

From the early days of their existence, the GPUs have 
been used for specialized, compute-intensive computations 
in the domain of computer graphics. Over the time, the 
GPUs offered programmability to some extent, through 
graphics application programming interfaces (APIs), such 
as OpenGL. Even at that point, some researchers tried to 
use an abundant computational power of those processors 
in general, non-graphics computations, which is described 
in [2] and [3]. It was clearly proved that the GPUs are 
especially good at data-parallel processing in certain 
domains, so that led to rapid development of the GPU 
architectures. The GPUs evolved to programmable, highly 
parallel multiprocessors with considerable computational 
power and high bandwidth, an order of magnitude higher 
than those of the contemporary CPUs. Unlike the CPUs, 
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the GPUs have more transistors devoted to data processing 
rather than to data caching and sophisticated flow control. 
The GPU is a suitable platform for all compute-intensive 
problems that exhibit high regularity.  

CUDA (Compute Unified Device Architecture) is a 
parallel computer architecture developed by NVIDIA. It 
significantly simplified the use of the GPUs for 
non-graphics purposes through its programming model 
and an extension of C language. For non-graphics 
computations, CUDA exposed a generic parallel 
programming model in a multithreaded environment, with 
support for synchronization, atomic operations, and eased 
memory access. Programmers do not need to use the 
graphics API anymore to execute non-graphics 
computation. 

Typically, the CUDA programs are executed in 
coprocessing mode, where the GPU serves as a 
coprocessor to the CPU and accelerates the most time 
consuming parts of the application. The sequential parts of 
the application are executed on the CPU (host) and the 
compute-intensive parts are executed on the GPU (device). 
The applications are programmed through a simple API 
and C language extensions that target the parts of the code 
executed on the device. 

The CPU initiates the execution on the device, being 
also responsible for data management and device 
configuration. The parallel parts of the application are 
executed on the device as special functions (kernels) called 
from the CPU side. A kernel is run in parallel by batches 
of lightweight threads executed on the processing units 
called streaming multiprocessors. To maintain scalability, 
a kernel execution is organized as a grid of thread blocks, 
as shown in Fig. 1. Every kernel is called with execution 
configuration that specifies the number of thread blocks in 
the grid and the number of threads in every thread block. 

CUDA offers the dedicated memory hierarchy to 
support fast, parallel execution. All threads can access the 
global memory of the device. Global memory accesses are 
slow, so CUDA offers other smaller memories in the 
hierarchy to speed up the execution. Thus, threads have 
access to registers, local memory, shared memory, 
constant memory, texture memory, and global memory. 

 

Threads in the same block can cooperate through a very 
fast shared memory and use barrier synchronization to 
coordinate their execution. Threads from different thread 
blocks cannot cooperate, since they may or may not 
execute on the same streaming multiprocessor. So, global 
synchronization is achieved only through repeated kernel 
calls, and that is one of the significant disadvantages of the 
CUDA platform that strongly affects the algorithm design. 
More information about the general-purpose computation 
on the GPUs and CUDA platform could be found in [4] 
and [5]. 

III. SORTING ON THE GPUS 

Sorting is one of the most widely studied areas in the 
field of computer science. Lots of interesting and diverse 
solutions to this problem are proposed, but the advances in 
architectures make this topic still active. The raw 
processing power of graphics processing units attracted 
researchers, so some very efficient solutions, such as [6] 
and [7], were implemented even in the early days of GPU 
computing, when non-graphics applications were 
implemented using the graphics API. 

Two approaches are commonly used in parallel sorting, 
as described in [8]. The merging approach sorts equally 
sized tiles locally in parallel, before proceeding recursively 
with a merge operation until the entire input array is 
sorted. On the contrary, the distribution approach reorders 
the keys globally into the buckets, such that all keys from 
one bucket are greater than those in the previous bucket 
and smaller from the ones in the next bucket. The 
procedure is carried on recursively on the buckets and the 
buckets are concatenated into the final sorted order. 
Quicksort and radix sort are the basic examples of the 
distribution sort algorithms, while merge sort is an 
example of the merging approach.  

A. Sequential Algorithms 

Quicksort is a divide-and-conquer algorithm which 
recursively splits the unsorted array into two partitions 
separated with the pivot element where the lower partition 
consists of the elements smaller than the pivot while the 
upper partition consists of the elements greater than the 
pivot. Since the partitions are independent, the algorithm 
could proceed with the same procedure in parallel, 
recursively, until all partitions collapse to a single element 
when the array is sorted. 

Merge sort takes the advantage of the ease of merging 
shorter sorted sequences into a longer sorted sequence. 
Merge sort employs the merge operation to sort a 
sequence. It starts by comparing every two elements in the 
sequence and putting them in the correct order. It then 
merges each of the resulting sequences of two into the 
sequences of four and repeats the merging operation, and 
so on, until last two sorted sequences are merged into the 
final sorted sequence. Merge operation exhibits inherent 
parallelism, since it could be done through a merge tree. 

Radix sort algorithm is based on the representation of 
keys as b-bit integers. This algorithm sorts the keys by 
examining groups of r bits in each pass, resulting in b/r 

 

 
 

Fig. 1. CUDA execution model. 
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passes in total. In every pass, keys are classified into 
buckets and the input sequence is reordered. Internally, 
radix sort often uses the counting operation to sort a 
sequence in each pass. The counting operation is used to 
obtain the number of elements in every bucket depending 
on the group of bits being processed. Efficient 
implementation of the counting operation is the core part 
of the parallel radix sort algorithm. 

B. Towards GPU Implementations 

Quick sort and merge sort are comparison-based 
algorithms, while radix sort works on the bitwise 
representation of the keys. The comparison-based 
algorithms usually switch to some other strategy when a 
tile or bucket fits into the processor cache line or shared 
memory on the GPUs [8]. That fact revived some old, 
inherently parallel ideas, like bitonic networks [9], so the 
bitonic sorting is a preferable choice for many algorithms 
in their beginning or final stages. 

Many GPU sorting algorithms use some parallel 
primitives to perform the sorting operation. Two very 
commonly used primitives are parallel reduction and 
parallel prefix sum (scan) operation. Parallel reduction 
operation reduces an array of values to a single value yi = 
x0 ⊕ x1 ⊕ …⊕ xn, given some binary operator ⊕. Scan 
operation [10] takes an input of n elements (x0,..xn-1) and 
produces an output (y0,..yn-1), where yi = x0 ⊕ x1 ⊕ …⊕ xi. 
Output can include or exclude the element xi, and ⊕ is a 
binary operator. 

C. Related Work 

First attempts to implement an efficient sorting 
algorithm using the innovative CUDA architecture were 
made by Harris et al. to demonstrate their implementation 
of the efficient scan primitive [11]. They implemented 
radix sort and a hybrid merge sort algorithm. Cederman 
and Tsigas implemented GPU quicksort algorithm [12] 
with a three-level strategy, described in Section IV.A. 
Satish et al. demonstrated even faster merge sort and radix 
sort, published in [13]. They implemented an efficient 
parallel merge operation, described in Section IV.B. 
Leischner et al. developed the comparison-based sample 
sort [14] that outperforms the merge sort of [13] for about 
30% for 32-bit integer keys. Dehne and Zaboli 
implemented the deterministic sample sort with similar 
results for uniformly distributed data [15]. 

Researchers paid even more attention to radix sort. 
Bandyopadhyay and Sahni developed the radix sort 
algorithm (GRS - GPU radix sort) suitable for sorting 
records with many fields [16]. Merrill and Grimshaw 
further improved the scan operations, which resulted in a 
highly optimized radix sort. At present, it is claimed to be 
the fastest GPU radix sort for 32-bit integers [17]. 

IV. PARALLEL IMPLEMENTATIONS OF 
SORTING ALGORITHMS 

Although numerous papers reported various 
improvements in the domain of sorting algorithms (as 
reported in Section II), only several implementations are 
publicly available, and thus could be used for comparative 
 

analysis and evaluation. Quicksort implementation of 
Cederman and Tsigas [12] is the only publicly available 
quicksort implementation, although Harris et al. [11] also 
implemented quicksort to demonstrate the usage of their 
scan primitives. The only merge sort implementation 
available is a part of the Thrust library [18]. The Radix 
sort implementations are available through CUDPP library 
[19] and NVIDIA GPU Computing SDK, both based on 
the work of Harris et al. We have chosen CUDPP 
implementation for testing, because it is better supported 
for various key types. The main algorithm charcteristics 
are described in the following sections.  

A. Quicksort 

The general approach of this algorithm follows the 
guidelines given in Section III.A, but takes into account 
specific execution on a manycore processor like the GPU. 
The algorithm recursively divides the unsorted array into 
more and more progressively smaller partitions until the 
entire array is sorted. Every partition operation results in 
moving all elements less than a pivot to the positions left 
of the pivot and all elements greater than a pivot to the 
positions right of it. In every iteration of the partition 
operation a new pivot element is chosen and two new 
partitions are created that can be independently sorted. The 
partition operation is repeated until there are enough 
partitions to assign to one thread block. Then, a thread 
block can efficiently sort the assigned partition in the per-
block shared memory. Since the thread blocks need to 
cooperate before they create enough independent 
partitions, the algorithm consists of two similar phases. 

In the first phase, many thread blocks work together on 
the unsorted array. The only way to synchronize the 
threads from different thread blocks is through repeated 
kernel calls. The kernel calls are not an expensive 
operation on the GPU, but still not negligible, so they are 
used a minimal number of times. In the second phase, 
every thread block works on the given part of the array 
which consists of the elements greater than in the previous 
block and smaller than in the next thread block. Since 
there is no need for thread block synchronization, the 
second phase is entirely executed in one kernel call. 

Both phases use the scan operation to determine the 
final position of an element in each phase. During the 
partition operation, every thread block counts the number 
of elements smaller than pivot and the number of elements 
greater than pivot for the given subsequence. Then, scan 
operation is performed and prefix sums are calculated for 
every element assigned to the thread. Additionally in the 
first phase, a global prefix sum across all blocks is 
calculated, in order to determine the final position of every 
element. At the end of iteration, the elements are reordered 
to their new positions in the array. In the final stage of the 
second phase, when subsequences are smaller than 1024 
elements, the algorithm changes the strategy and uses 
bitonic sort to sort the remaining sequence. This is done 
because the overhead of the partition operation becomes 
too high. 
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On conventional processor architectures, it is desirable 
to perform in-place sorting, since it exploits spatial locality 
and makes better utilization of the cache memory. Since 
the GPUs do not have a cache memory in a traditional 
way, the sorting is not done in-place. Also, the in-place 
sorting would impose the synchronization of threads 
during memory access, which is expensive on GPU 
architectures. Instead, an additional buffer space is used, 
which enables the performance benefits from coalesced 
reads and writes. In each iteration, data is read from the 
primary buffer and the result is written to the auxiliary 
buffer. Then the two buffers switch places. A similar case 
is with the following algorithms. 

B. Merge Sort 

Since the direct manipulation of keys is not always 
allowed in the sorting operation, one alternative is to use 
an efficient comparison-based algorithm. A viable solution 
is to use divide-and-conquer merge sort, which is proved 
to be efficient on traditional architectures. Also, the merge 
operation is a frequent parallel primitive, so several 
implementations of merge operation could be found in the 
literature, and [13] gives a good overview of those 
techniques. The GPU execution can exploit fine-grain 
parallelism, so the implementations should be tuned 
accordingly. 

Merge sort is frequently used as an external sorting 
algorithm, where the sequence being sorted is stored in a 
large external memory and the processor has direct access 
only to a much smaller memory [13]. A similar case is 
with the GPUs, since they have a large, but slow, global 
memory (up to 6 GB DRAM) and a small, on-chip shared 
memory (16 or 48 KB, depending on the configuration). 
Access time to a global memory is usually around 200 
cycles, while shared memory access time is 3 to 4 cycles. 
This is the reason we need to split the data into blocks that 
fit into the shared memory, to sort it locally and then to 
move the data out. The whole process should be repeated 
as long as it is needed to sort the given sequence. 

A merge sort algorithm consists of three phases. In the 
first phase, the input data are split into p equally sized 
blocks. In the second phase, all p blocks are sorted using p 
thread blocks (usually 256 threads each). In the final 
phase, sorted blocks are merged into the final sequence. 
On the block level, an alternative sorting method is used. 
At first, authors experimented with the common bitonic 
sort algorithm, but then they switched to odd-even merge 
sort as the authors claim that it is 5-10% faster in practice 
[13]. The most intensive part of the algorithm is the merge 
operation. The merge operation is implemented through a 
pair-wise merge tree, but since the number of pairs to be 
merged decreases geometrically, it was of great 
importance to implement the merge operation in such a 
way that would exploit fine-grain parallelism rather than 
the coarse-grain parallelism inherent to the merge tree. 

The merging process is outlined as follows. If we have 
two sorted sequences A and B, each less than 256 
elements in size, we can merge them using only one thread 
block. Since A and B sequences are accessed fairly 
 

randomly during the merging process, it is very important 
that sequences should fit into the fast shared memory. 
Each thread in the block takes an element from the A 
sequence and then determines the rank (position) of that 
element in the merged sequence. Since both A and B 
sequences are sorted, the final rank is easily determined 
using the rank of the element in the A sequence and 
parallel binary search to determine the rank of the same 
element in the B sequence. The elements of B sequence 
are merged in the same way. 

If there are more than 256 elements in A and B 
sequences, they are split into a set of subsequences, using 
splitter elements. The splitters are chosen from the two 
sequences such that the interval between two successive 
splitters is small enough to be merged by a thread block. 

C. Radix Sort 

Radix sort assumes that the keys are d-digit numbers 
and sorts the sequence by processing one digit of the keys 
at a time, from the least to the most significant digit. To 
sort the digits within each of the d passes, counting sort or 
bucket sort are typically used. As described in Section 
III.A, an efficient radix sort implementation is heavily 
dependent on the counting operation. The counting 
operation is easy to parallelize on the GPUs, since it is 
efficiently supported with scan operations. However, it is 
of great importance to implement the operation in such a 
way as to utilize the fast shared memory.  

This implementation processes 4-bit digits, so 8 passes 
are needed to sort 32-bit integers. In every pass of the 
algorithm, keys are reordered according to a processed 
digit. In order to do so, it is needed to determine the new 
rank (position) of each key in the sequence. The rank is 
determined by counting the number of keys less or equal 
but occurring earlier in the sequence than a given key. 
After all ranks are determined, keys are scattered to new 
positions in the sequence, and the process continues. This 
counting preserves the relative ordering of  keys with 
equal digits, so sorting each digit from least to most 
significant is guaranteed to leave the sequence correctly 
sorted after all d passes are complete [13]. 

As key reordering is typically the process with an 
irregular memory access pattern, every pass is 
implemented in four steps, and utilizes a shared memory in 
order to avoid expensive global memory accesses. In the 
first step, a thread block locally reorders a given tile using 
the bit-split operation according to the digit being 
processed. Then, a histogram is computed for each tile 
counting the occurrences of the 2b possible digits in the 
given tile. In the third step, prefix sums of the histograms 
of all tiles are computed, and finally, keys are reordered to 
their final positions using the computed prefix sums.  

This approach has several advantages. It utilizes a 
global memory bandwidth efficiently, by minimizing the 
number of scatters to a global memory and maximizing the 
coherence of scatters. The coherent accesses (coalesced 
reads and writes) to the global memory are an important 
factor, since they can improve the bandwidth up to 10 
times. The number of scatters to a global memory is 
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reduced by tiling (blocking of data) and using the higher 
radix (b > 1). Coherent accesses are achieved by locally 
reordering a given tile of data in the shared memory. 
Furthermore, this implementation uses 256 threads per 
thread block. One thread is given four elements to process, 
so one thread block is in charge of 1024 elements. 
Although it would be more logical to give every thread 
only one element, experiments have shown that this way 
every thread has a bit more sequential work to do, thus 
hiding the memory latency better.   

V. EVALUATION ENVIRONMENT 

The testing and evaluation of the implemented 
algorithms was carried on in an automated environment, 
described in detail in [21]. This environment consists of 
several components that implement the different aspects 
needed to test and evaluate sorting algorithms. It includes 
a pseudorandom generator of different data distributions, 
the components for time measurment, regression testing to 
check the correctness of the results, and storing of the 
results of the experiments.  

A. Input Dataset 

Input data distribution is the characteristic that must be 
considered especially, since it can affect the algorithm 
performance. Sorting performance could heavily depend 
on the input data distribution, so a careful generation of 
test arrays is very important. Typically, the performance of 
algorithms that process a binary representation of keys, 
such as different variants of radix sort, is dependent on the 
key length. Some algorithms, such as quicksort, are 
sensitive to a non-uniform distribution in input arrays, 
especially when the number of different keys is limited. 
Also, some algorithms like merge sort can benefit from the 
presortedness of the input arrays, so all those 
characteristics were kept in mind when input data sets 
were chosen. Consequently, the evaluation was conducted 
using seven different data sets: 

 

1. 16-bit and 32-bit keys of uniform distribution;  
2. 32-bit integers of Gaussian distribution; 
3. Few unique keys arrays; 
4. Nearly sorted arrays; 
5. Sorted and reverse sorted arrays. 
Since other data distributions could be derived from the 

uniform distribution, such as normal distribution, it was of 
great importance to find a good pseudorandom generator. 
Also, the pseudorandom generator should be fast enough, 
since test arrays can have millions of elements. Mersenne 
Twister [20] was used in our experiments. It provides fast 
generation of very high-quality pseudorandom number, 
with a period of 219937-1. 

B. Evaluation Methodology 

The evaluation was done within our automated test 
environment. Every algorithm was run four times with 
different input arrays of different sizes. The array size was 
varied from 1K to 10M elements. After every sorting 
operation, a regression test was done, in order to check the 
correctness of every algorithm. A regression test is done 
using quicksort implementation (qsort) from the standard 
C library. Test results were stored in the CSV (Comma 
Separated Values) file, according to the previously defined 
format and then processed using MS Excel. 

Windows XP OS was used to test the algorithms on the 
machine with processor Core 2 Duo E7600 3.06GHz and 4 
GB RAM. CUDA programs were executed on the NVIDA 
GeForce GTS 250 with 512MB RAM using CUDA driver 
version 2.3. 

VI. EXPERIMENTAL RESULTS 

After automated experiments were conducted, results 
were processed and analyzed. Fig. 2 shows a performance 
comparison of three algorithms for different data 
distributions. Generally, radix sort exhibits the best and 
most stable performance. This was expected, since this 
algorithm works on the binary representation of keys, and 
typically outperforms comparison-based algorithms for 
shorter keys. Quicksort and merge sort show a similar 
performance, but quicksort is more sensitive to input data 
distributions, especially for those with a limited number of 

Fig. 2. Performance of the GPU sorting algorithms for 
different data distributions; 1 – 16-bit uniform 

distribution, 2 – 32-bit uniform distribution, 3 – Gaussian 
distribution, 4 – Few unique keys, 5 – Nearly sorted 
arrays, 6 – Sorted arrays, 7 – Reverse sorted arrays. 

Fig. 3. Performance comparison of the GPU sorting 
algorithms and sequential (qsort) algorithm.  
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keys. It is a known drawback of the sequential quicksort 
algorithm, and it adheres to the GPU implemention to 
some extent, as well. Despite these performance pitfalls, 
the GPU algorithms are much less dependent on the input 
data distribution than their sequential implementations or 
their counterparts on other parallel platforms, like Message 
Passing Interface (MPI) or Pthreads [21]. This is mostly 
due to data-parallel nature and Singe Instruction Multiple 
Data (SIMD) execution of applications on the GPUs. The 
GPUs are manycore processors, and thus expose much 
finer granularity, so the applications could be tuned in a 
more sophisticated way. 

Fig. 2 shows one more interesting fact. Standard C 
library sort function, qsort, is more efficient than the GPU 
implementations for short arrays, typically under 10K 
elements. In order to execute the applications on the GPU, 
we need to take some preparatory steps during the launch 
of the kernel. Also, memory transfers from CPU to GPU 
memory and vice-versa are proved to be costly, too. So, 
there is an amount of parallel overhead involved in the 
execution of every GPU algorithm. That time dominates in 
the overall execution time for smaller-sized arrays, while it 
is amortized for larger arrays.   

Since one of the goals of parallel computing is to solve 
demanding problems within a given amount of time [4], a 
programmer should always be aware of the dimension of 
the problem to be solved, and choose a suitable algorithm 
accordingly. Because of the parallel overhead, which is 
inherent to parallelization process, the dimension of the 
problem should be large enough in order to obtain the 
benefit from parallel execution. Hybrid solutions that 
utilize both multithreading on the CPU and the GPU, 
depending on the problem size, could be developed and 
tuned empirically if there is a need to cover a wide range 
of input data sizes.  

VII. CONCLUSION AND FUTURE WORK 

Modern graphics processing units provide an abundant 
processing power and the observed speedup could be an 
order of magnitude higher depending on the problem to be 
solved. On the other hand, CUDA technology offers the 
programming of the GPUs through a general API, which 
in turn considerably eases the use of the GPUs for 
general-purpose computations. 

Sorting algorithms can achieve a good performance and 
scalability on the GPUs. Observed execution times are 
3-5x higher than those of the sequential implementations, 
which is very important for this bandwidth consuming 
operation. On the other hand, the GPU implementations 
are more complex, typically several hundred lines of code, 
and not easy to understand and maintain. Thus, it is 
recommended to use available implementations, as they 
are quite sufficient for the majority of applications. From 
the platform point of view, the GPU implementations are 
much better than others as they offer a very good 
price-performance ratio. 

Future work is envisaged in two directions. The first 
direction is to enhance the evaluation environment by 
including more diverse test cases. Those would include

floating point keys, various key lengths (from 8-bit to 
64-bit), and new data distributions, like staggered arrays 
and distributions with different key entropy levels. The 
other direction is to include some other implementations of 
the GPU sorting algorithms, such as sample sort or 
improved versions of radix sort. 
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