
Telfor Journal, Vol. 6, No. 1, 2014. 75

Abstract — It is very important to test and monitor the

operation of Programmable Logic Controller (PLC) in real
time (online). Nowadays, conventional, but expensive
monitoring systems for PLCs, such as Supervisory Control
and Data Acquisition (SCADA) systems, software and
hardware simulators (or debuggers), are widely used. This
paper proposes a user friendly and cost-effective
development environment for monitoring, data acquisition
and online simulation of applications with PLC. The purpose
of this solution is to simulate the process which is controlled
by the PLC. The performances of the proposed development
environment are presented on the examples of washing
machine and dishwasher simulators.

Keywords — Data acquisition, monitoring, PLC,
simulation.

I. INTRODUCTION

ROGRAMMABLE Logic Controller (PLC) is a
special form of microprocessor-based controller which

is used to control machines and processes [1]. PLCs can be
used with a wide range of control systems, which vary
widely in their nature and complexity. Due to its electrical
properties and especially programming simplicity, a PLC
is one of the most essential parts of control systems in
automation industry.

After programming the PLC, before starting a real
process, the operator has to verify if the program is
correct, i.e. if the PLC correctly performs the predefined
control task. Therefore, the operator monitors the states at
input and output port of the PLC. A conventional way is to
monitor all the states and program variables online, during
the operation of PLC, with the same programming
environment which was used for programming the PLC. In
order to have a better insight into the process which is
controlled by the PLC, it is best to develop a physical
educational model of the system, where the operator
manually enters the inputs of the PLC and monitors its

Paper received March 3, 2014; revised May 12, 2014; accepted May
13, 2014. Date of publication July 31, 2014. The associate editor
coordinating the review of this manuscript and approving it for
publication was Prof. Zorica Nikolić.

This paper is a revised and expanded version of the paper presented

at the 21th Telecommunications Forum TELFOR 2013.

Ognjen Bjelica is with the Faculty of Electrical Engineering,
University of East Sarajevo, Vuka Karadzica 30, 71123 East Sarajevo,
BIH (phone: 00387-57-342788; e-mail: ognjen.bjelica@etf.unssa.rs.ba).

Srđan Lale is with the Faculty of Electrical Engineering, University of
East Sarajevo, Vuka Karadzica 30, 71123 East Sarajevo, BIH (phone:
00387-57-342788; e-mail: srdjan.lale@etf.unssa.rs.ba).

output states. However, this can take a long time and more
costs depending on the complexity of the system. Also,
this solution isn’t modular because it is difficult and time
consuming to rebuild the model if some changes are
necessary.

The most complex system for monitoring and control of
industrial processes which is widely used nowadays is
Supervisory Control and Data Acquisition (SCADA)
system [2], [3]. This system requires the use of
communication protocols between the client on one side
and PLC and other parts of control system on the other
side. Although the SCADA is a standard monitoring and
data acquisition system in industry, it isn’t easy to make,
so it isn’t appropriate in simple control systems, when it is
necessary to make a simple cost-effective monitoring
system in order to test whether the PLC performs its
predefined task correctly.

In recent time there have been many research efforts
dealing with real time simulation of different applications
with PLCs. For example in [4] the software simulation is
presented for a train control system which is based on
serial communication between a PC and a PLC. In [5]
authors used a virtual model of Tetra Pak Filling machine
for the validation and demonstration of PLC program.

This paper proposes a user friendly, simple and cost-
effective development environment which can be used for
data acquisition, monitoring and simulation of PLC
controlled applications. Using software simulations can
also improve learning experience of PLC programming so
it is suitable for wide audience. This solution differs from
similar ones because a PC is not directly coupled with a
PLC (it uses an interface board instead of PLC dependent
communication). So in theory any PLC could be used in
this way without modifying simulation model on PC.

The proposed system consists of two parts: the
electronic board for interface between the PLC and PC and
a software simulator which is a Visual Basic .NET
(VB.NET) application.

This paper is organized as follows. Section II describes
the electronic board for interface between the PLC and PC.
The PC application is described in Section III.
Experimental verification of proposed data acquisition,
monitoring and simulation system is given in Section IV.
Section V is the conclusion.

II. THE INTERFACE BOARD BETWEEN PLC AND PC

The proposed development environment is intended to

A Cost Effective Solution for Development
Environment for Data Acquisition, Monitoring
and Simulation of PLC Controlled Applications

Ognjen Bjelica and Srđan Lale

P

76 Telfor Journal, Vol. 6, No. 1, 2014.

work as follows. The operator uses a software simulator to
activate certain inputs of the PLC, while the PC
application receives the information about output states of
the PLC and it shows them graphically, i.e. in animation.
This process is realized through an interface board which
communicates with the PC and controls/reads the
input/output ports of the PLC. The block diagram of the
interface board is shown in Fig. 1.

The common power supply DC voltage for all PLCs is
+12 V or +24 V. The outputs signals of PLC (+12 V/+24
V for a logical “1” and 0 V for a logical “0”) are
connected to the interface board at the input of
optocouplers, which are used for galvanic isolation
between the PLC and microcontroller on the interface
board. Except for galvanic isolation, which is very
important in these applications, optocouplers were used for
the adjustment of voltage levels for the microcontroller
because the power supply voltage of microcontroller is
typically +5 V or +3.3 V. In this way the output signals
from the PLC are brought to the corresponding inputs of
the microcontroller via optocouplers, so the
microcontroller gets information about the output states of
the PLC. This information is sent by the microcontroller to
the PC over a serial RS-232 communication protocol and
animated in a software simulator. Also, the operator
activates, using the software simulator, the control inputs
of the PLC (e.g. START and STOP signals) over the serial
port of the PC and interface board.

Fig. 1. The block diagram of the interface board.

The result is a simple system for monitoring and testing
the operation of the PLC, where the user can start and stop
the control process easily over a graphical interface and
monitor its progress in real time.

The prototype of the interface board is shown in Fig. 2.

III. PLC PROGRAMS

The PLC algorithms for both washing machine and
dishwasher are in principle the same. In both cases the
PLC first reads inputs (input ON/OFF for power and
START signal for the beginning of machine’s process). A
high logic value of START signal activates the timer with
a predefined value of machine’s process step time. After
reaching the time limit of the timer, the specified counter
is incremented, the timer resets and this process is
continued until the end of machine’s process. The current
value of the counter determines the position in machine’s
working cycle that is used for specifying the outputs of the
PLC. Depending on the states of counter and outputs,
several working phases are indicated on the Human
Machine Interface (HMI) display of the PLC and in the PC

application. When the counter reaches some predefined
final value, PLC sends a sign to stop the operation of the
process and depending on its input signals (ON/OFF and
START) it can begin a new working cycle. The described
algorithm is shown in Fig. 3.

Fig. 2. The prototype of the interface board.

Fig. 3. The flowchart of washing machine and dishwasher.

Generally, this is the most common way for solving time
based problems. Of course, this algorithm is just for the
PLC which is unaware of its surrounding environment –
meaning that the PLC program does not need any kind of
modification whether it’s working in a real or simulated
system.

IV. SOFTWARE SIMULATORS

Process of developing a software simulator is quite
simple because of the used serial communication. The

Microcontroller

RX TX

PC

G
al

va
n

ic

is
ol

at
io

n

G
al

va
n

ic

is
ol

at
io

n

O
u

tp
u

ts
 o

f
P

L
C

In
p

u
ts

 o
f

P
L

C

Bjelica and Lale: Data Acquisition, Monitoring and Simulation of PLC Controlled Applications 77

interface board uses two kinds of serial packages, as it is
shown in Fig. 4. The first is for setting input ports and the
second is for getting the states of output ports of PLC.

Fig. 4. a) Packet for getting output states of PLC which
consists of two bytes. b) Packet for setting input ports of

PLC.

So far, two software simulators have been developed
just to show the principle. One is a washing machine
simulator and the other is a dishwasher simulator.
Software developers can use a development platform they
are most familiar with. The earlier mentioned washing
machine and dishwasher simulators were developed using
VB.NET and Microsoft .NET framework. VB.NET was
used because it is English like language so it is easier to
read and understand. End users can use any language they
wish – feel most comfortable with. The structure of .NET
framework is shown in Fig. 5. The Windows Presentation
Foundation (WPF) was chosen For Graphical User
Interface(GUI) because of its many qualities, but mostly
because of good animation support [6], [7].

Developing a software simulator using the WPF made
this process almost trivial. The process consists of making
a couple of animations (which require 0-lines of code
using Microsoft Blend) and then writing a simple code
which calls them if a particular state changes.

Fig. 5. The structure of .NET framework.

For example, the GORENJE PG 202 Q washing
machine [8] and the Whirlpool dishwasher [9] use a timing
diagram which means that changes in the program are
known in advance and happen in particular time intervals.
The implementation of timing diagram is left to the PLC
programmer. What is only important for the simulator are
the states of the machine (for example, is the heater on, or
is the motor turning in either direction, etc.). After
determining which states need to be animated, the next

step is making animations. As mentioned earlier, the WPF
was used for this process but it is not limited to it. For
example, Flash or HTML5 with CSS3 could be used for
making animations [10]. Fig. 6 and Fig. 7 display a
finished user interface (UI) for a washing machine and
dishwasher simulator, respectively. Unfortunately,
animations cannot be seen in these figures. Common
controls (ON/OFF buttons, buttons for changing programs,
display, etc.) are also implemented and animated. Even
close in rotating drum is animated. As it’s demonstrated in
these simple real-life devices, practically there is no
limitation on what can be simulated in this way. It’s worth
mentioning that simulation itself doesn’t need to be
complicated (rotations and translation are good enough).

Fig. 6. User interface for washing machine simulator

(everything is animated except for door opening).

Fig. 7. User interface for dishwasher simulator (everything

is animated except for door opening).

Animation is followed by writing a simple code which
gets and/or sets the states of output/input ports and, based
on that, a corresponding animation starts. A pseudo code
would be:

if PLCoutputport.Motor = ON then
 startDrumAnimation()
else
 stopDrumAnimation()
end if

The code for both simulators is simple because it does

not simulate the entire washing machine and dishwasher
but only simple parts of these machines like a drum on or
drum off. The entire logic behind the simulator is
presented in Fig. 8.

Using this approach it is possible to develop very simple
simulators (such as a bulb, simple conveyer belt, parking
lot, etc.), but it is also possible to develop very complex
simulations with ease. In this way a software simulator can
be developed even by people who have not much
experience in software development. This aspect is

78 Telfor Journal, Vol. 6, No. 1, 2014.

important for most students, teaching assistants, professors
and engineers because they can focus on programming
PLCs. Also it is worth mentioning that some parts could
be generalized in order to be reused for other simulations.

Fig. 8. Steps in software simulation.

V. OVERVIEW OF ENTIRE SYSTEM

The proposed development environment, as is shown in
Fig. 9, consists of PC, PLC and interface board. The two
main parts are:

 interface board,
 software simulator.

The interface board has the following key components:
 microcontroller (Microchip PIC18F4550) [11],
 optocouplers for galvanic isolation (Vishay

ILD615-3) [12],
 connector for UART communication (which can

be used to connect the interface board to the PC

 using RS- 232, USB, bluetooth or other desired
protocol) – in Fig. 9 is shown the usage of
additional RS-232 communication board.

In the above examples, UNITRONICS Vision 120TM
OPLCTM (Graphic Operator Panel & Programmable Logic
Controller) was used [13], but with no modification what
so ever in software simulator, other PLCs can be used
instead. The main reason why this is possible is because
the system is modular and the simulator just simulates
primitive parts, not the entire logic as it was stated before.
Also, this solution does not require the usage of particular
programming environment for PLC, instead the user can
choose the programming environment based on his needs
and wishes, because the interface board only uses the
standard inputs and outputs of PLC. In these examples the
PLC programs are implemented in VisiLogic software
environment, in the form of ladder diagrams.

The response time of the entire system is limited by the
following factors:

 speed of microcontroller (used on the interface
board),

 baud rate of UART communication,
 logical delays of interface board (optocouplers),
 response time of developed PC application (this

can vary from a multiple factor such as PC itself,
used language, etc.).

For instance, the used microcontroller can easily
execute its task in less than 1 ms; UART set up on 115200
baud can transfer 2B in ~0.1 ms; logical delays of
interface boards are in the order of µs or ns so they are
negligible; the response time of PC application is usually
less than the response time of microcontroller (once again
this can vary). When summed up, all these delays are of
the order of a couple of ms, which is acceptable in most
scenarios.

Fig. 9. The complete development environment for monitoring, data acquisition and simulation of PLC controlled

applications.

Bjelica and Lale: Data Acquisition, Monitoring and Simulation of PLC Controlled Applications 79

VI. CONCLUSION

The presented solution can significantly improve the
learning experience of PLC programming with minimal
funds. Instead of building complex and expensive models,
software simulation can and should be used. This approach
has many pros and these are just some of them:

 easier to develop,
 cheaper to develop,
 once a simulator is developed it can be copied

and used by thousands of students/engineers,
 safer to use and harder to destroy,
 easier to transport and set up,
 can be used in distance learning and virtual

laboratories.
Also, this solution can be used for monitoring and data

acquisition of PLC controlled processes, without using
complex communication protocols. Using this approach
can significantly speed up the development of PLC
programs because a programmer can simulate his code
while he is programming it and detect bugs in earlier
stages, without stopping the real control process which is
unacceptable in many situations.

There are many cons to this approach, but probably the
most important thing about this solution is that it is vendor
independent and cheap to implement.

REFERENCES
[1] W. Bolton, “Programmable Logic Controllers,” 5th ed., Newnes,

2009 ISBN 978-1-85617-751-1, Chapter 1.
[2] Galloway, B.; Hancke, G.P., “Introduction to Industrial Control

Networks,” Communications Surveys & Tutorials, IEEE , vol.15,
no.2, pp.860,880, Second Quarter 2013.

[3] S. G McCrady, “Designing SCADA Application Software: A
Practical Approach,” 1st ed., Elsevier, 2013, ISBN 978-
0124170001.

[4] K.M. Liu; D.M. Jiang, “PLC used in the train control simulation
system,” Computer Science and Automation Engineering (CSAE),
2012 IEEE International Conference on , vol.2, no., pp.308,311, 25-
27 May 2012.

[5] T. Erlandsson, M. M. Rahaman, “Testing and verifying PLC code
with a virtual model of Tetra Pak Filling Machine,” Master thesis
report, Report No. EX016/2013, Chalmers University of
Technology, Gothenburg, Sweden 2013.

[6] M. MacDonald, “Pro WPF 4.5 in VB,” 3rd ed., Apress, 2008, ISBN
978-1590598221.

[7] A. Troelsen, “Pro VB 2008 and the .NET 3.5 Platform,” 1st ed.,
Apress, 2012, ISBN 978-1430246831.

[8] Gorenje, “GORENJE PG 202 Q service manual” [Online],
accessible at: http://www.gorenje.com/, [last time accessed on
15.09.2013.].

[9] Whirlpool, “Whirlpool Dishwasher service manual”, [Online],
accessible at: http://www.whirlpool.com/, [last time accessed on
18.02.2014.].

[10] E. Castro, “HTML5 & CSS3 Visual QuickStart Guide,” 7th ed.,
Peachpit Press, 2011, ISBN 978-0321719614.

[11] Microchip, “PIC18F2455/2550/4455/4550 Data Sheet,” [Online],
accessible at: http://www.microchip.com/, [last time accessed on
15.09.2013].

[12] Vishay, “Optocoupler, Phototransistor Output (Dual, Quad
Channel),” [Online], accessible at: http://www.vishay.com/, [last
time accessed on 15.09.2013].

[13] Unitronics, “V120-22-UN2 Graphic Operator Panel &
Programmable Logic Controller,” [Online], accessible at:
http://www.unitronics.com/, [last time accessed on 15.09.2013].

