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 
Abstract — A single-iteration algorithm is proposed for the 

reconstruction of sparse signal from its incomplete set of 
observations. Recently, the reconstruction algorithms have 
been intensively developed within the Compressive Sensing 
framework. Most of the existing solutions are based either on 
l1-norm optimization methods or greedy iterative procedures 
with a priori known number of components or predefined 
number of iterations. We propose a simple non-iterative 
algorithm based on the analysis of noise-effect that appears 
in the frequency domain as a consequence of missing 
samples. The noise variance can be related and controlled by 
the number of missing samples. Accordingly, it is possible to 
keep the level of spectral noise below the signal components, 
such as to be able to accurately detect signal support and to 
reconstruct the entire signal. The theory is proven on various 
examples with multicomponent signals. 

Keywords — Compressive Sensing, missing samples, DFT, 
reconstruction algorithms. 

I. INTRODUCTION 

OWADAYS, one of the most challenging topics and a 
key issue in various applications such as data 

compression, source separation, noise reduction, and more 
recently Compressive Sensing (CS) is finding a sparse 
linear decomposition of a given signal [1]-[3]. Particularly, 
in the case of CS, the idea is to reconstruct the entire 
signal from its small set of random available samples by 
searching for the best sparse approximation. Various CS 
signal reconstruction methods have been proposed in the 
literature [4]-[9], and among them we may define two 
general approaches. The first one is l1 norm based 
minimization approach which is solved using convex 
programming [4], [5]. On the other hand, there are much 
faster approaches, so called greedy algorithms, which are 
iterative procedures that decrease the approximation error 
by relaxing the sparsity constraint. The most commonly 
used among them is the Orthogonal Matching Pursuit 
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(OMP) [8], [9], together with a number of its variations 
such as Gradient Pursuit (GP), Compressive Sampling 
Matching Pursuit (CoSaMP), etc. Although they are faster 
and simpler than convex optimization algorithms, the 
greedy methods may usually assume that the number of 
signal components is a priori known. Otherwise, the 
stopping criterion for iterations can be based on mean 
square error [10]. The error value should be estimated 
empirically for each particular application, since it needs 
to be specified in advance. Through iterations, the greedy 
algorithms approximate the coefficients and the support of 
the original signal, until the stopping criterion is met.   

In this paper, we propose a single-iteration algorithm 
based on the analysis of effects caused by missing 
samples. We start from the assumption that the considered 
compressive sampled signals are sparse in the Fourier 
transform domain. The side effects caused by having an 
incomplete set of time observations instead of a full data 
set are modeled as spectral noise characterized by a mean 
value and variance. As long as we are able to keep the 
noise effects below the signal components level in the 
Fourier domain, we can provide the entire signal 
reconstruction within a single iteration. The proposed 
solution also defines an optimal number of available 
measurements, which is required to recover a signal with a 
low probability of error. Here, it is important to emphasize 
that the proposed concept is not only applicable to the 
signal and its Fourier transform, but can be extended to the 
time-frequency representations being crucial in various 
real applications including radars, biomedicine, 
multimedia, [12]-[14], etc. Namely, most of the existing 
time-frequency representations are obtained as the Fourier 
transform of windowed auto-correlation function. In this 
case, the proposed concept could be applied to the 
windowed auto-correlation function segments.  

The paper is organized as follows: The theoretical 
background about the Compressive Sensing is given in 
Section II. The single-iteration reconstruction algorithm is 
proposed in Section III. The experimental results are 
presented in Section IV, while the Concluding remarks are 
given in Section V. 

II. COMPRESSIVE SENSING 

Compressive sensing is usually applied when dealing 
with signals that need a high sampling rate, since the 
acquisition of these signals may require a high number of 
sensors, and large storage and transmission resources. In 
these circumstances, it is useful to explore the possibility 
of sampling at far lower rates, and, when required, to 
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reconstruct the entire signal from the small set of 
measurements. For this purpose, we need a random 
sampling procedure that provides incoherent 
measurements. Also, the reconstruction should be done in 
the domain where the signal is sparse. Sparsity means that 
the signal can be represented by a small number of non-
zero coefficients. The mathematical foundation of CS lies 
in the fact that it is possible to reconstruct a sparse signal 
from an underdetermined linear system of equations, and 
that this can be done in a computationally efficient manner 
via convex programming [5]. Consider a signal s that can 

be represented in a certain basis  
1

N

k 
 Ψ , using the 

weighting coefficients xk: 

 
1

N
k kk

s x


  . (1) 

The previous relation can be written also in the vector 
form as follows: 

,s = Ψx  

where 1 2[ , ,..., ]Ψ N    is a full rank N×N matrix. 

One example can be a finite-length discrete signal 
represented using discrete sinusoids in a limited 
bandwidth. The matrix Ψ  would be actually the discrete 
Fourier transform (DFT) matrix. In CS, we are interested 
in any basis that allows a sparse representation of s. 
Generally, it is assumed that s is not available. Instead of 
the whole signal s, we are actually dealing with a small set 
of M randomly sensed measurements, where M<<N. A set 
of random measurements is selected using the random 
measurement matrix  [1]-[3], as follows: 
 y =Φs . (2) 

Accordingly, we may write: 
 y =ΦΨx=Θx . (3) 

Here, the matrix Θ  is called the CS matrix of size M×N, 
y is an M×1 vector of available measurements, while x is a 
desired N×1 vector of transform domain coefficients. 
Consequently, in order to obtain the reconstructed signal, 
we need to solve the underdetermined system of M linear 
equations with N unknowns. It is obvious that this system 
may have infinitely many solutions, but the idea is to 
search for the sparsest one. For this purpose, various 
optimization algorithms based on 0 - norm minimization 

were used. However, due to the problem complexity, the 

0 - norm minimization has been replaced in practical 

applications with the 1 - norm minimization, leading to 

near-optimal solutions. The 1 -norm minimization 

problem in CS can be defined as follows [4]: 

 
1

ˆmin


x subject to ˆy x  (4) 

The above minimization can be solved by using convex 
optimization algorithms such as Basis Pursuit algorithm 
[15],[16], with some of the commonly used solvers such as 
simplex and interior point methods (e.g., primal-dual 
interior point method). However, the complexity of this 
realization is still high. Therefore, for real-time processing, 
the greedy algorithms, such as OMP and CoSaMP, have 
been widely used in the applications. These algorithms 
represent iterative approximate solutions. For instance, the 

OMP algorithm includes the best fitting component in 
each iteration [8]-[10],[17], until the stopping criterion is 
met. The stopping criterion is usually related to the known 
number of signal components, or alternatively, the 
predefined reconstruction error. The greedy algorithms are 
generally far less complex than convex optimizers, but the 
convergence to the optimal solution is not guaranteed. 

III. SINGLE-ITERATION RECONSTRUCTION ALGORITHM 

(SIRA)  

In this Section we propose a single-step (non-iterative) 
algorithm for the reconstruction of compressive sensed 
signals. The proposed algorithm is based on the 
assumption that the observed signals are sparse in the DFT 
domain. As a consequence of having an incomplete set of 
signal samples, the DFT domain representation of the 
compressive sampled signal is not sparse and it is affected 
by noise-effect. Namely, the missing samples in the time 
domain (observation domain) will produce a certain kind 
of noise in the spectral domain (DFT domain) which 
deteriorates signal representation [18],[19]. A larger 
number of missing samples produces larger noise variance, 
ruining the signal’s sparsity. Consequently, signal 
components detection becomes more difficult. 

In order to identify the signal support (the positions of 
signal components) which is necessary for efficient signal 
reconstruction, we need to model the induced noise-effect. 
Hence, to provide automatic components detection and 
reconstruction when dealing with a compressive sensed 
signal, we need to start from the expression which relates 
the number of missing samples to the spectral noise 
variance. Let us assume that the signal s=s(n), n=1,…,N 
consists of K frequency components defined by the 
amplitudes Ai and frequencies ki , i=1,...,K. The DFT of 
this signal is defined as: 

 
1

2 ( ) /

0 0

( ) i
N K

j k k n N
i

n i

S k A e 


 

 
   . (5) 

From the previous relation, we can observe the set of 
samples h defined as:  

2 ( ) /
0

( ) { , 0,..., 1}iK j k k n N
ii

h n A e n N 
   ,   

where 1
0

( ) 0
N
n

h n

   holds. Furthermore, consider a set y 

of M available samples from h corresponding to the CS 
signal. The DFT over the available samples can be written 
as follows: 

 
1 1

( ) ( ) ( ) ( )
M M

n n

F k y n h n n
 

    . (6) 

Note that at the positions of missing samples, the noise can 
be modeled as ( ) ( )n h n  . The mean value of DFT 

vector F can be written as: 

 
1

{ } ( )
K

i i
i

E F MA k k


  , (7) 

whereas the variance of the DFT values at the non-signal 
positions can be calculated according to [17]: 
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The DFT values at the non-signal positions (noise-alone 
positions) are Rayleigh distributed: 
 

 
2 2/

2

2
( ) , 0zz

f z e z


  . (9) 

Since the smallest DFT component is equal to MAmin, then 
using the Rayleigh distribution, we can define the 
probability that N-K DFT values corresponding to spectral 
noise (noise-alone DFT positions) are all below the lowest 
component MAmin: 

2 2
min min
2 2

1 1 1 1

NN K
X M A

eP e e 


 

  
               

. (10) 

The previous expression can be used as an approximate 
form of error probability Pe (probability of wrong 
detection of signal component), which is a basis of signal 
reconstruction algorithm summarized below.  

 

The proposed algorithm for signal reconstruction -
 Single-iteration reconstruction 

1. Set desired value for the probability of error Pe. It 
is recommended to choose a high value for Pe, in 
order to provide successful signal reconstruction 
(e.g. Pe=10-2). 

2. For a given M, N and the total signal energy 
2

1

K
ii

A , calculate the variance of the DFT 

values at the non-signal positions. 
3. Having Pe and 2, and assuming that the lowest 

signal component has the amplitude Amin, 
determine the optimal number of available 
samples using (10): 

arg min{ }opt eM P . 

4. Calculate the noise threshold Thresh according to:  
 

2 log(1 )N
eThresh P   . 

5. Calculate the initial DFT vector X that 
corresponds to the set of M available 
measurements. 

 
6. Find vector k of positions of DFT components 

higher than threshold: 

 arg X Thresh k . 

7. Calculate the exact DFT values at positions k by  
solving the system in the least square sense: 

X=(*)-1*y, 
where y represents the vector of available samples 
from original signal, while CS matrix   is 
obtained from the DFT matrix using columns that 
correspond to the frequencies k and rows 
corresponding to M available measurements. 

IV. EXAMPLES 

A. SIRA application on the signal Fourier transform 

Example 1: The aim of this example is to provide the 
experimental evaluation of the proposed analysis and 
algorithm. First, let us observe a signal consisting of three 
components, with different amplitudes, defined as:  

31 2 2 /2 / 2 /
1 2 3( ) e e e j nf Nj nf N j nf Ns n A A A     , 

where: A1=0.3, A2=0.1, A3=0.6, f1=32, f2=128,  f3=256, and 
n=1:N. The total number of samples is 512. Based on (10), 
the optimal number of samples for signal component 
detection can be determined. Here, the Pe is set to 0.1 and 
Mopt is calculated according to Mopt≥ argmin{Pe}, for each 
signal component. The optimal number of samples 
required for detection of each considered signal 
component is illustrated in Fig. 1. A higher amplitude 
requires a smaller number of samples, and vice versa. As it 
can be seen from Fig. 1, the third component with the 
highest amplitude A3=0.6, requires the smallest number of 
samples, i.e., M=15, while components with amplitudes 
A1=0.3 and A2=0.1 require M=65 and M=296 samples, 
respectively. The initial and reconstructed FT when using 
a different number of available samples M are shown in 
Fig. 2. In Fig. 2a, the component with the highest 
amplitude A3 is detected and reconstructed, by using 
M=15. When we increase M to 65, the second component 
(A1) is detected– Fig. 2b. In Fig. 2c the third component is 
detected after we increased the number of measurements 
to M=296. Note that, in order to reconstruct the entire 
signal, the optimal number of samples Mopt has to be 
calculated according to the amplitude of the smallest 
component. Therefore, Mopt should be 296 in this case. 

The threshold is marked by a horizontal line in Fig. 2. 

Having in mind (8) and 2 log(1 )N
eP  , it can be 

concluded that the threshold will increase as M increases, 
because the signal components will be more enhanced 
compared to noise.  

Table 1 shows Mopt and corresponding thresholds for the 
same signal and for different probabilities of error. As it is 
expected, the number of optimal samples per component 
decreases as the probability of error increases. 

 
TABLE 1: THRESHOLD AND OPTIMAL NUMBER OF SAMPLES, FOR 

DIFFERENT AMPLITUDES AND PROBABILITIES OF ERROR. 

Probability 
of error 

Amplitude 
Optimal 
number 

Mopt  
Threshold 

0.001Pe   
0.6 22 0.0126 
0.3 88 0.0235 
0.1 337 0.0295 

0.01Pe   
0.6 18 0.0120 
0.3 78 0.0234 
0.1 318 0.0316 

0.1Pe   
0.6 15 0.0118 
0.3 65 0.0232 
0.1 296 0.0344 

0.9Pe   
0.6 9 0.0115 
0.3 48 0.0255 
0.1 255 0.0437 
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Fig. 1. Optimal number of available samples which assures Pe=10-1, for different amplitudes of components. 

 

 
a) 

 
b) 

 
c) 

 
Fig. 2: Initial FT (left column) and reconstructed FT (right column) for different numbers of available samples: 

a) M=15, b) M=65, c) M=296. 
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Example 2: Consider now the signal consisting of 10 
components, defined as follows: 

10
2 /

1

( ) e ij nf N
i

i

s n A


  . 

The signal amplitudes are A1=1.5, A2=2.5, A3=2, A4=1.75, 
A5=2.25, A6=3.5, A7=2.15, A8=3.25, A9=3.75, A10=3.4, 
A11=2.2, A12=2.3, A13=2.8, A14=3.3. Probability of error is 
set to 10-2 and the optimal number of samples should be 
determined based on the value of Pe. The strongest 
component could be detected with a small number of 
samples M=30, as it can be seen from Fig. 3.  

 
Fig. 3 Optimal number of available samples for Pe=10-2 

and different components amplitudes (M=180 for the 
smallest one). 

 
The number of optimal samples required for successful 
reconstruction is chosen for a minimal amplitude 
component and it is equal to 180 for a chosen value of 
probability (Fig. 3). The initial and reconstructed FT are 
shown in Fig. 4. From the previous two examples it can be 
concluded that the reconstruction accuracy does not 
depend on the number of signal components, but only on 
the smallest component amplitude and chosen threshold 
(i.e. probability of error). 

A. SIRA application in the time-frequency domain 

Example 1: In this example we observe the application of 
the proposed reconstruction algorithm to the time-
frequency representation. For the sake of simplicity we 
observe the short-time Fourier transform case (STFT) 
applied to the signal in the form: 

64 24 96 128( ) 3.1 3.2 3.15 3j t j t j t j ts t e e e e        

The window width used in the STFT calculation is 128 
samples. Signal is reconstructed by using a certain number 
of samples from each windowed signal part. The 25% of 
samples are considered as available within each windowed 
signal part. The spectrogram (SPEC) calculated from the 
available samples is shown in Fig. 5. Note that due to the 
missing samples, the SPEC has visible drawbacks 
reflected as noise in the time-frequency plane. Therefore, 
we need to apply the proposed reconstruction algorithm 
separately to each windowed signal part in order to 
reconstruct the entire representation. The results of 
reconstruction are shown in Fig. 6. Note that the 

components in the time-frequency plane are perfectly 
reconstructed. 

 
 a) 

 
 b) 
Fig. 4 a) Initial FT, b) Reconstructed FT by using M=180 

samples and for Pe=10-2. 

 
 

Fig. 5. SPEC calculated using only the available set of 
samples. 

V. CONCLUSION 

A single-iteration algorithm for Compressive Sensing 
reconstruction is proposed. Unlike most of the previously 
designed algorithms, the proposed solution is able to 
detect and reconstruct all signal components at once. For 
that purpose, we need to calculate the optimal number of 
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available measurements that will assure total signal 
reconstruction with a desired low probability of error. The 
proposed method focuses on signals that are sparse in the 
DFT domain, but it has been shown that the proposed 
concept can be used even for time-frequency 
representations, where we might assume that the signal is 
sparse within the windowed segments. 

 
 

Fig. 6. The reconstructed SPEC by using the proposed 
algorithm. 
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