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Abstract — Performance of software routers is limited by the 
speed of the operating system network protocol stack. A faster 
network protocol stack can be implemented in user space by 
utilizing parallelization and different optimization techniques. 
In this work we demonstrate an efficient implementation of 
the IP lookup algorithm in user space with multibit trie 
structures. Afterwards, we demonstrate the improvements 
achieved through parallelization. We evaluate pthreads and 
OpenMP parallelization methods and compare their 
performance. 
 

Keywords — 10 GbE, high speed packet I/O, IP lookup, 
parallelization, software routers. 

I. INTRODUCTION 
Routers are fundamental devices in modern networks. 

Vendors aim to provide the devices which are easy to 
configure and install, hiding their operations from users. 
However, there is a need for more flexible solutions, where 
users will be able to modify the routing process according 
to their own needs. For this reason, research and industry 
are showing interest for the routers that are open and 
implemented in software.  

A software router is a server with built-in network 
interface cards (NIC) and installed routing software. 
Software routers have multiple advantages over their 
hardware counterparts – simplicity of adding or modifying 
routing functionalities, low price and independence from 
hardware manufacturers. The main disadvantage of 
software routers is the performance [1].  

Packet rate is a measure used to characterize speeds of 
software routers. It represents the number of packets routed 

per second. Maximal achievable routing performance of the 
Linux protocol stack is limited to 4 Mpps (Mega packets 
per second) [2]. In order to fully utilize 10 GbE cards, 
software routers must forward packets at rates of at least 
14.88 Mpps per port. This is the worst case scenario, in 
which only 64B Ethernet frames are sent on the link.  

There are various reasons why the Linux protocol stack 
is not capable of achieving higher routing speeds. The data 
path of the network protocol stack consists of many system 
calls [2]. Each system call represents an overhead of 
hundreds of nanoseconds, which is significant as system 
calls are invoked for each packet. Furthermore, packets are 
copied multiple times in the processing path, which is a 
time-consuming operation. Additionally, structures used to 
store packets contain many redundant fields in order to 
support various protocols, many of which are legacy 
protocols. As a result, the total number of instructions per 
packet is high, as well as the number of conditional 
instructions. 

Speed of the existing Linux kernel is difficult to improve, 
so researchers implemented ways to bypass kernel and 
implement routing functionalities in user space. With fast 
I/O frameworks, such as netmap [2], DPDK [3] or psio [4], 
raw packets may be directly transferred from NIC to user-
space. Implementing network protocol stack in user space 
brings multiple advantages. First, it is not necessary to have 
background in kernel development. Secondly, this method 
fits well with the virtualization of functionalities that offer 
flexible utilization of computing resources. Finally, better 
control of the packet forwarding can be achieved, and it is 
easier to parallelize routing applications. 

In recent years, frequency scaling has reached its limit, 
and industry has moved to the processors with multiple 
cores [5]. In order to speed up routing process, it is not 
sufficient to optimize data processing path on a single core, 
but multiple processor cores must also be used. Thanks to 
the fact that NICs have multiple packet queues, it is possible 
to break data path processing across different independent 
threads, and to execute these threads in parallel. 

The first part of this paper is related to the 
implementation of the IP lookup procedure in user space 
using the netmap framework. The second part of this paper 
is related to the parallelization of the IP lookup application. 
We have parallelized the lookup procedure in two different 
ways: using POSIX threads (pthreads) and using OpenMP 
API. At the end, we have compared the results. 
Parallelization has been designed for general-purpose 
processors. 
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II. NETMAP FRAMEWORK 
Network cards comprise multiple ports, each with its own 

FIFO buffers for transmission and reception of packets. In 
the receive path, packets are forwarded from the input FIFO 
to one or more input queues. In the transmit path, packets 
are forwarded from one or more output queues to the output 
FIFO. Queues are organized in the form of circular buffers, 
i.e. NIC rings. Rings hold packet descriptors, which carry 
information about packet locations in memory, packet 
lengths and flags. The number of rings per port may vary, 
but there are usually as many rings as the processing cores. 

Netmap is a framework for high speed packet I/O [2], 
which is based on replicas of NIC rings (Fig. 1). Netmap 
rings are circular buffers intended to be accessed by user 
space applications. Application accesses available slots, 
which are located between head and tail pointers. User 
space application reads packets from the Rx rings, and 
writes packets to the Tx rings.  

Netmap framework performs synchronization between 
hardware NIC rings and software netmap rings. 
Synchronization is the procedure of slots’ exchange 
between NIC rings and application rings. Netmap 
framework guarantees that user space application and NIC 
always use mutually exclusive sets of slots. 

 

 
Fig. 1. Netmap and NIC rings. Each ring consists of slots 

that store packet descriptors. 
 
Advantages brought by netmap allow faster routing 

speeds. Processing of the packets is performed in batches. 
System calls are initiated for each batch, which lowers the 
total system calls’ overhead. Copying of packets is avoided, 
as it is time-consuming. For packet storage, simple pre-
allocated structures are used. During the routing process, 
there will be no allocations. 

III. RECEIVE SIDE SCALING MECHANISM 
Receive-side scaling (RSS) is a mechanism which 

determines the way in which the received packets are 
distributed across different Rx rings according to contents 
of their headers [7]. The number of Rx rings varies from 
NIC to NIC. RSS is applicable only to IP packets. If the 
packets are non-IP, they will be sent to the first available Rx 
ring.  

RSS mechanism is illustrated in Fig. 2, as implemented 
on the Intel X540 controller [7]. Hash value is calculated 
from source and destination IP addresses. If TCP/UDP 
headers are present, source and destination port numbers 
will also be included in the hash calculation. Calculated 

hash value is used as the input of the redirection table. Table 
is populated with the identificators of Rx rings to which the 
packets should be forwarded. It should be noted that packets 
cannot be distributed to input buffers in a round-robin 
fashion, as it would cause packet reordering. 

Existence of multiple input buffers per port allows 
parallel packet processing. Usually, the number of Rx rings 
equals the number of cores in system. Application will 
spawn the number of threads equal to the number of cores 
multiplied by the number of ports. Each thread is in charge 
for one receive/transmit pair of queues at each port. All 
threads can independently process received packets on 
separate cores. The routing table is the only shared data, and 
its access must be protected.  

 

 
 

Fig. 2. Illustration of RSS mechanism [7]. 

IV. PARALLELIZATION TECHNIQUES 
Parallelization may be achieved through the use of 

POSIX threads (pthreads). Pthreads have unique API on 
multiple operating systems, which guarantees 
interoperability [6]. It is a parallel programing at low level 
meaning that a programmer directly manipulates threads. 

It is also possible to achieve parallelization at higher 
level, by using OpenMP API. OpenMP offers various 
benefits to programmers – parallelization simplicity, easy 
to read code, minimized possibility to cause race 
conditions, etc. However, finer control of the threads is lost, 
and debugging becomes complex. 

In order to further improve performance, it is possible to 
use a coprocessor card or graphic processing unit (GPU). 
Coprocessor cards have tens to hundreds of processors to 
which sections of code could be off-loaded. GPUs comprise 
hundreds to thousands of simpler cores which execute 
instructions according to the Single Instruction Multiple 
Data (SIMD) model. In this model, all the cores execute the 
same instructions, but on different data sets. 

V. IMPLEMENTATION 

A. Reception and transmission of packets 
Packets are received and transmitted using netmap ring 

structures. In the case of reception, application reads packet 
descriptors starting from the head pointer. Head pointer is 
incremented whenever a packet is read. When head pointer 
reaches tail pointer, synchronization is initiated through 
ioctl system call. Synchronization represents an exchange 
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of slots between netmap and NIC rings. After 
synchronization, application will receive a new set of slots 
for processing. 

On the transmission side, the opposite procedure is 
performed. Application writes packets between head and 
tail pointers. When the head pointer reaches tail, 
synchronization is triggered. Through synchronization, 
empty slots from the NIC rings and filled slots from the 
netmap rings are exchanged. 

B. Packet processing 
From each packet, source and destination MAC 

addresses are extracted. If the destination MAC address is 
not appropriate, i.e. the packet destination MAC address 
does not match the port MAC address, this packet is 
discarded. Afterwards, it is determined if the packet has an 
IP header, and if all of its flags are set correctly.  

IP lookup is performed based on the destination IP 
address. The result is information about the next hop device 
to which the packet should be forwarded and through which 
port. According to the next hop information, new MAC 
addresses will be obtained, and they will be inserted into the 
Ethernet header. 

In order to avoid costly system calls, frequent function 
calls are avoided. Function calls cause huge overhead by 
putting current processor context and arguments on stack. 
Therefore, each function in the time-critical section of code 
should be implemented as inline. Additionally, packets are 
not copied at all throughout the application. 

C. IP lookup procedure 
IP lookup tables are often implemented as binary tries 

[8]. These structures have nodes that represent IP prefixes. 
The depth of node is the number of network bits in a prefix. 
If the route exists for a certain prefix, then, the 
corresponding node will have the route assigned. All 
subtries with the nodes without assigned routes can be 
deleted. 

Lookup procedure starts from a root node in a trie. 
Destination IP address is examined bit by bit, starting from 
the MSB. If the bit is 0, algorithm will examine left child 
node, if it is 1, it will examine the right child node. If the 
examined node has been assigned a route, it will become a 
new longest prefix node. The procedure is repeated for the 
child node of the examined node that corresponds to the 
following IP destination address bit. Algorithm ends when 
there are no more child nodes to be examined. The result of 
the algorithm is the route of the longest prefix node. 

The IP lookup based on binary trie might take a long 
time. In the worst case, 32 reads are necessary from the 
shared memory.  For this reason, multibit trie structures are 
preferred [8]. Multibit trie structures are similar to binary 
tries, but each node has multiple children nodes whose 
number is denoted as stride. Usually, stride is power of 2. 
By using this technique, the maximal number of memory 
reads is reduced to 32/stride.  

Search algorithm using multibit tries is similar, now in 
each step of the algorithm stride of bits is examined. With 
the increase of the stride length, the lookup speed increases, 
as well as the memory consumption. Usually, the stride 

length is a trade-off between memory size and lookup 
speed. 

D. Parallelization 
Netmap framework allows opening a separate file 

descriptor for each ring. One thread will be in charge of one 
Rx/Tx ring pair per each port. Thread will only perform 
synchronization for its own set of rings. 

Parallelization is based on the RSS mechanism for 
forwarding packets from input FIFO into different Rx 
queues (rings). Each thread will be in control of one Rx ring 
from each port. Depending on the routing decision, thread 
will forward a packet to one of the available ports. Each 
thread will also control one Tx ring from each port.  

We have designed two different parallelized IP lookup 
applications – the first one is parallelized by means of 
POSIX threads, at low level, and the second one is 
parallelized by means of OpenMP, at high level. Our goal 
was to compare which parallelization method is better to 
use for the applications that require high packet processing 
speeds. 
1) POSIX threads application 

In the first application, parallelization is implemented by 
means of POSIX threads. The first part of the program is 
the initialization procedure. Each thread is created through 
pthread_create function. Afterwards, all threads are 
initialized. Each thread is configured to be cancelled in a 
deferred way. Deferred cancellation means that the thread 
will cancel itself slightly later after the request of the main 
thread, in order to avoid data corruption. Threads will 
terminate themselves only in parts of the code that are not 
time-critical. As a part of thread cancellation, the clean-up 
routine will be executed in order to release allocated 
resources. Clean-up routine is pushed to the thread’s private 
stack during the initialization. 

The main task of each thread is packet routing, where 
each thread performs the procedures explained in sections 
B and C. All threads calculate the number of routed packets, 
and write the values to a shared memory. After the 
synchronization procedure, each thread calls the 
pthread_testcancel function to check whether it should 
terminate. Additionally, the main thread is calculating the 
total number of routed packets by adding the number of 
packets routed on all threads. 

The user requests the termination of program through the 
SIGTERM signal. Each second, the main thread is checking 
status of this signal. If the termination of the program has 
been requested, the main thread will call pthread_cancel 
function. This function announces to the other threads that 
they should terminate themselves. The main thread will, 
then, wait for this condition blocked on pthread_join 
function. Afterwards, it will terminate itself.  
2) OpenMP application 

Pthreads are the low level parallelisation method which 
provides finer control of the behaviour of the threads. 
However, this API can be quite complex to use. It is much 
easier to parallelize the program at the higher level, in the 
OpenMP environment. 

We have parallelized the program through the use of the 
parallel OpenMP sections (#pragma parallel omp), as each 
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thread performs essentially the same packet processing 
routine. The main thread is different, as it has to calculate 
the routing speed and check for the termination signal. This 
part of the code is isolated by the pragma #pragma omp 
master. Upon receiving SIGTERM signal, the main thread 
sets a shared variable, which should be examined later as a 
condition to exit the packet processing while loop. All the 
threads will terminate themselves at that point in code, thus 
eliminating the problem of possible data corruption. 

E. Accessing routing table 
Access to the shared variables must always be 

synchronized in order to avoid race conditions. For that 
purpose, pthreads offer low-level mutex and spinlock 
objects. Accessing shared data through locking objects in 
time-critical section of the code is not favourable as it 
inhibits the routing speed. Therefore, locking operations 
should be avoided in the parts related to packet processing, 
if possible. 

Shared variables in OpenMP are accessed and modified 
through the lightweight atomic instructions. The critical 
sections were avoided as much as possible, as they 
introduce serial executions in the code. Critical section is 
necessary only in the part of the code related to the opening 
of file descriptors, which is acceptable as this procedure is 
not in the time-critical code section. 

In the case of our parallelized IP lookup application, the 
shared resource is the IP lookup table. Accessing the lookup 
table from all threads is safe, because none of them is 
modifying its content. However, control plane routing 
protocols must change routing table on the fly. For this 
reason, accessing routing table from data plane threads must 
be prohibited during the routing table update by control 
plane. When the main thread receives a request for table 
modification, it will stop execution of all data plane threads, 
until the routing table update is finished. 

VI. TESTING ENVIRONMENT 
Three server machines were used, with characteristics 

given in Table 1. The first server is used as a packet 
generator. It generates packets on two ports with 10 Gbit/s 
rate per port. The second server is a software router with the 
installed IP lookup application. Router has four ports. It is 
configured to forward all the traffic received on the first two 
ports to the remaining 2 ports. This configuration does not 
reflect real life scenarios, but it is suitable to test the limits 
of a software router. The third server is used as a packet 
sink, and to measure the speeds at which the routed packets 
arrive. 

 
Fig. 3. Testing environment. 

 
The first server generates TCP packets using DPDK 

packet generator [3]. Packets are generated with the highest 
packet rate necessary to saturate 10 Gbit/s links. The packet 
rate can be calculated according to (1): 

 

 
( )8 20

bitRatepktRate
pktSize

=
⋅ +

  (1) 

 
where pktRate and bitRate are the packet and bit rates 
respectively, and pktSize is the packet size. The constant 20 
comes from 20B of interpacket gap, preamble and start of 
frame delimiter in Ethernet frames. Maximal packet rate 
available on 10 Gbit/s link is 14.88 Mpps, which is 
achieved for the minimal size Ethernet frames of 64 B. In 
the case where two ports are used, this results in 29.76 Mpss 
in total.  
 

TABLE 1: CHARACTERISTICS OF TEST MACHINES 
 

 packet_generator packet_receiver software router

Processor Intel Core  i7-
3770K

2x Intel Xeon E5-
2620 

Intel Core  i7-
3770K

# of Cores 4 per CPU 6 per CPU 4 per CPU
# of 
Threads 8 per CPU 12 per CPU 8 per CPU 
Frequency 3.5 GHz 2.0 GHz 3.5 GHz

Cache 
size 

L1 = 32K + 32K 
L2 = 256 KB 
L3 = 8 MB

L1 = 32K + 32K 
L2 = 256K 
L3 = 15M 

L1 = 32K + 32K 
L2 = 256 KB 
L3 = 8 MB

RAM size 16GB DDR3  
@ 1600 MHz

16GB DDR3  
@ 1066 MHz 

8GB DDR3  
@ 1333 MHz

NIC 

Name:  
AOC-STGN-i2S 
Controller: 
Intel 82599 
Number of ports: 2 
Speed:  
10 Gbit/s per port 

Name:  
AOC-STG-i4S 
Controller:  
Intel XL710-AM1 
Number of ports: 4 
Speed: 
10 Gbit/s per port  

Name:  
AOC-STG-i4S 
Controller:  
Intel XL710-AM1 
Number of ports: 
4 
Speed: 10 Gbit/s 
per port

OS CentOS Linux 7 Ubuntu 14.04 Ubuntu 14.04

 
Two different sets of tests were performed. In the first 

set, packets were generated on one port of the packet 
generator only. In the second set, packets were generated on 
both ports. For each set, tests were conducted for different 
packet lengths: 64 B, 128 B, 256 B, 512 B, 1024 B and 
1500 B. For a given packet size, tests were repeated for 
different number of flows: 1, 2, 4, 8, 16, 32 and 64. Flows 
are separated according to the source TCP address.  

Software router receives all the packets on the two ports, 
and forwards them to the other two ports, as depicted in Fig. 
3. Software router has 8 logical cores, and also 8 input and 
output queues per port. IP lookup table is realized using 
multibit trie structures, with stride length equal to 4. IP 
lookup table is filled with 16777216 routes. This table does 
not reflect any practical situation, but it is useful for testing 
as it requires the most read-outs from memory per packet. 
Each of these routes specify server 1 as the next hop device. 

VII. RESULTS AND DISCUSSION 
We have measured speeds of the IP lookup in Linux 

kernel, IP lookup netmap application parallelized with 
Pthreads, IP lookup netmap application parallelized with 
OpenMP, and the speeds the packet transfers from one port 
to another without any modifications. The last value shows 
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the maximal performance that the netmap framework may 
achieve. All measured values are compared with 
theoretically maximal packet rate which will saturate 
10 Gbit/s links. Each test case is run for 10 seconds, and the 
average value of packet rate is calculated. 

Fig. 4 shows packets rates of the IP lookup application 
parallelized with Pthreads, IP lookup application 
parallelized with OpenMP, IP lookup in Linux kernel, 
packet forwarding without packet modification in netmap 
(netmap bridge) and theoretically maximal packet rates in 
the case when one data flow is generated. In Fig. 5 packet 
rates are shown for the same applications and 64 data flows 
generated on one port. Packet rates are expressed in mega 
packets per second (Mpps). 

From Fig. 4, we can see that the netmap bridge 
application is able to forward the packets with theoretically 
maximum packet rates. This confirms that the netmap itself 
is able to support such speeds. The performance of the 
applications parallelized by means of pthreads is almost 
identical to the OpenMP application, i.e. parallelization at 
higher level has not degraded routing performance. 

The worst case situation for parallel applications is when 
one data flow is used, i.e. when no processing could be done 
in parallel. Maximal forwarding performance is around 3.8 
Mpps, which is approximately four times lower than the 
maximal value. For the packets larger than 309 B, maximal 
achievable packet rates are reached. Parallelized 
applications perform the best when many data flows are 
used (Fig. 5). In this case, both parallel applications achieve 
maximal 14.88 Mpss rate. 

The routing speed of the Linux kernel for one data flow 
is 1.06 Mpps, which is 14 times lower than the theoretically 
maximal value. For 64 data flows, the routing speed of 
Linux kernel improves, rising to 4.09 Mpps, which is 
3.6 times lower than the maximum speed. By this, we have 
confirmed that Linux kernel indeed is not suitable to 
forward 10 Gbit/s traffic. 

We also performed tests in which the data is generated 
on two ports. In Fig. 6, we have shown the forwarding 
speeds for the case where one data flow per port is 
generated. In Fig. 7, we have shown the forwarding speeds 
for 64 data flows per port. Tested applications are the same 
as in the previous graphs. 

 

 
Fig. 4. Performance of IP lookup applications for different 

packet lengths and one data flow generated on one port. 
 

 
Fig. 5. Performance of IP lookup applications for different 

packet lengths and 64 data flows generated on one port. 
 

In the case of one data flow per port (Fig. 6), it may be 
observed that the maximal forwarding speed of the netmap 
framework is 29.61 Mpps. This is slightly lower than the 
theoretically maximal packet rate for 64 B Ethernet frames 
for two ports, equal to 29.76 Mpps. The pthreads 
parallelized netmap IP lookup application achieves a 
forwarding speed of 7.38 Mpps, while the OpenMP 
parallelized application similarly achieves 7.49 Mpps.  

Parallelized applications are approximately four times 
faster than the Linux kernel with the packet rate of 
1.91 Mpps. Additionally, the IP lookup table in netmap 
application requires the maximal number of memory 
cycles, while the IP lookup kernel table is filled with static 
routes. 

With the increase of packet length, it can be observed that 
the netmap performance approaches theoretically maximal 
values, while the performance of the IP lookup application 
and kernel IP lookup are the same as in the case of 64 B 
packets. For the packets longer than 512 B, the netmap IP 
lookup application reaches theoretically maximal packet 
rates. This is not the case for the Linux kernel, which cannot 
achieve maximal packet rates for any packet length. 
 

 
Fig. 6. Performance of IP lookup applications for different 
packet lengths and one data flow generated on each of the 

two ports. 
 

In the case of the parallelized IP lookup (Fig. 7), the 
performance of the IP lookup in kernel and IP lookup in 
netmap are improved. For the 64 B packets, and 64 data 
flows per port, the forwarding speed of the netmap IP 
lookup parallelized by pthreads is 25.14 Mpps and the 
forwarding speed of the parallelized by the OpenMP is 
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25.26 Mpps. Once again, there are no observable 
differences between the applications parallelized in 
different manners. For the same test case, the forwarding 
speed of the IP Linux kernel is 4.05 Mpps, which means 
that the netmap IP lookup is approximately six times faster 
than the Linux IP lookup.  

By leveraging the parallelization potential, i.e. RSS 
mechanism, we achieve more than three times better lookup 
speedup compared to the case when RSS is not used. 

 

 
Fig. 7. Performance of IP lookup applications for different 
packet lengths and 64 data flows generated on each of the 

two ports. 
 

 
Fig. 8. Performance of IP lookup applications for different 
packet lengths and one data flow generated on each of the 

two ports. 
 
We have concluded that the forwarding speeds are 
improving with the increase in the number of flows, thanks 

to the parallelization. In Fig. 8, we can see how packet rates 
scale with the increase in the number of flows per port. The 
limit is achieved for the number of flows per port equal to 
4, both for the netmap applications, and the Linux kernel. 

VIII. CONCLUSION 
In this paper, we have shown one efficient realization of 

the IP lookup in user space by using fast I/O frameworks 
and parallelization. We demonstrated that the routing speed 
of the user space application is approximately four times 
better than the Linux kernel routing speed, in the critical 
case of minimal 64B packets. The results show that the 
parallelized application is more than three times better than 
the sequential one. Finally, we concluded that it is much 
easier to perform parallelization for packet processing 
applications on a higher level, without introducing 
performance penalty.  
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