
2 Telfor Journal, Vol. 9, No. 1, 2017.

Abstract — Performance of software routers is limited by the
speed of the operating system network protocol stack. A faster
network protocol stack can be implemented in user space by
utilizing parallelization and different optimization techniques.
In this work we demonstrate an efficient implementation of
the IP lookup algorithm in user space with multibit trie
structures. Afterwards, we demonstrate the improvements
achieved through parallelization. We evaluate pthreads and
OpenMP parallelization methods and compare their
performance.

Keywords — 10 GbE, high speed packet I/O, IP lookup,
parallelization, software routers.

I. INTRODUCTION
Routers are fundamental devices in modern networks.

Vendors aim to provide the devices which are easy to
configure and install, hiding their operations from users.
However, there is a need for more flexible solutions, where
users will be able to modify the routing process according
to their own needs. For this reason, research and industry
are showing interest for the routers that are open and
implemented in software.

A software router is a server with built-in network
interface cards (NIC) and installed routing software.
Software routers have multiple advantages over their
hardware counterparts – simplicity of adding or modifying
routing functionalities, low price and independence from
hardware manufacturers. The main disadvantage of
software routers is the performance [1].

Packet rate is a measure used to characterize speeds of
software routers. It represents the number of packets routed

per second. Maximal achievable routing performance of the
Linux protocol stack is limited to 4 Mpps (Mega packets
per second) [2]. In order to fully utilize 10 GbE cards,
software routers must forward packets at rates of at least
14.88 Mpps per port. This is the worst case scenario, in
which only 64B Ethernet frames are sent on the link.

There are various reasons why the Linux protocol stack
is not capable of achieving higher routing speeds. The data
path of the network protocol stack consists of many system
calls [2]. Each system call represents an overhead of
hundreds of nanoseconds, which is significant as system
calls are invoked for each packet. Furthermore, packets are
copied multiple times in the processing path, which is a
time-consuming operation. Additionally, structures used to
store packets contain many redundant fields in order to
support various protocols, many of which are legacy
protocols. As a result, the total number of instructions per
packet is high, as well as the number of conditional
instructions.

Speed of the existing Linux kernel is difficult to improve,
so researchers implemented ways to bypass kernel and
implement routing functionalities in user space. With fast
I/O frameworks, such as netmap [2], DPDK [3] or psio [4],
raw packets may be directly transferred from NIC to user-
space. Implementing network protocol stack in user space
brings multiple advantages. First, it is not necessary to have
background in kernel development. Secondly, this method
fits well with the virtualization of functionalities that offer
flexible utilization of computing resources. Finally, better
control of the packet forwarding can be achieved, and it is
easier to parallelize routing applications.

In recent years, frequency scaling has reached its limit,
and industry has moved to the processors with multiple
cores [5]. In order to speed up routing process, it is not
sufficient to optimize data processing path on a single core,
but multiple processor cores must also be used. Thanks to
the fact that NICs have multiple packet queues, it is possible
to break data path processing across different independent
threads, and to execute these threads in parallel.

The first part of this paper is related to the
implementation of the IP lookup procedure in user space
using the netmap framework. The second part of this paper
is related to the parallelization of the IP lookup application.
We have parallelized the lookup procedure in two different
ways: using POSIX threads (pthreads) and using OpenMP
API. At the end, we have compared the results.
Parallelization has been designed for general-purpose
processors.

Speeding Up IP Lookup Procedure in Software
Routers by Means of Parallelization

Mihailo Vesović, Graduate Student Member, IEEE, Aleksandra Smiljanić, Member, IEEE,
and Milo Tomašević

Paper received May 25, 2017; accepted June 16, 2017. Date of
publication July 31, 2017. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Grozdan
Petrović.

This paper is a revised and expanded version of the paper presented

at the 24th Telecommunications Forum TELFOR 2016 [9].

This work was supported by the Serbian Ministry of Science and

Education (project TR-32022), and by companies Telekom Srbija and
Informatika.

Mihailo Vesović is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11120 Belgrade,
Serbia (e-mail: mikives@etf.rs).

Aleksandra Smiljanić is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11120 Belgrade,
Serbia (e-mail: aleksandra@etf.rs).

Milo Tomašević is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11120 Belgrade,
Serbia (e-mail: mvt@etf.rs).

Vesović et al.: Speeding Up IP Lookup Procedure in Software Routers by Means of Parallelization 3

II. NETMAP FRAMEWORK
Network cards comprise multiple ports, each with its own

FIFO buffers for transmission and reception of packets. In
the receive path, packets are forwarded from the input FIFO
to one or more input queues. In the transmit path, packets
are forwarded from one or more output queues to the output
FIFO. Queues are organized in the form of circular buffers,
i.e. NIC rings. Rings hold packet descriptors, which carry
information about packet locations in memory, packet
lengths and flags. The number of rings per port may vary,
but there are usually as many rings as the processing cores.

Netmap is a framework for high speed packet I/O [2],
which is based on replicas of NIC rings (Fig. 1). Netmap
rings are circular buffers intended to be accessed by user
space applications. Application accesses available slots,
which are located between head and tail pointers. User
space application reads packets from the Rx rings, and
writes packets to the Tx rings.

Netmap framework performs synchronization between
hardware NIC rings and software netmap rings.
Synchronization is the procedure of slots’ exchange
between NIC rings and application rings. Netmap
framework guarantees that user space application and NIC
always use mutually exclusive sets of slots.

Fig. 1. Netmap and NIC rings. Each ring consists of slots

that store packet descriptors.

Advantages brought by netmap allow faster routing

speeds. Processing of the packets is performed in batches.
System calls are initiated for each batch, which lowers the
total system calls’ overhead. Copying of packets is avoided,
as it is time-consuming. For packet storage, simple pre-
allocated structures are used. During the routing process,
there will be no allocations.

III. RECEIVE SIDE SCALING MECHANISM
Receive-side scaling (RSS) is a mechanism which

determines the way in which the received packets are
distributed across different Rx rings according to contents
of their headers [7]. The number of Rx rings varies from
NIC to NIC. RSS is applicable only to IP packets. If the
packets are non-IP, they will be sent to the first available Rx
ring.

RSS mechanism is illustrated in Fig. 2, as implemented
on the Intel X540 controller [7]. Hash value is calculated
from source and destination IP addresses. If TCP/UDP
headers are present, source and destination port numbers
will also be included in the hash calculation. Calculated

hash value is used as the input of the redirection table. Table
is populated with the identificators of Rx rings to which the
packets should be forwarded. It should be noted that packets
cannot be distributed to input buffers in a round-robin
fashion, as it would cause packet reordering.

Existence of multiple input buffers per port allows
parallel packet processing. Usually, the number of Rx rings
equals the number of cores in system. Application will
spawn the number of threads equal to the number of cores
multiplied by the number of ports. Each thread is in charge
for one receive/transmit pair of queues at each port. All
threads can independently process received packets on
separate cores. The routing table is the only shared data, and
its access must be protected.

Fig. 2. Illustration of RSS mechanism [7].

IV. PARALLELIZATION TECHNIQUES
Parallelization may be achieved through the use of

POSIX threads (pthreads). Pthreads have unique API on
multiple operating systems, which guarantees
interoperability [6]. It is a parallel programing at low level
meaning that a programmer directly manipulates threads.

It is also possible to achieve parallelization at higher
level, by using OpenMP API. OpenMP offers various
benefits to programmers – parallelization simplicity, easy
to read code, minimized possibility to cause race
conditions, etc. However, finer control of the threads is lost,
and debugging becomes complex.

In order to further improve performance, it is possible to
use a coprocessor card or graphic processing unit (GPU).
Coprocessor cards have tens to hundreds of processors to
which sections of code could be off-loaded. GPUs comprise
hundreds to thousands of simpler cores which execute
instructions according to the Single Instruction Multiple
Data (SIMD) model. In this model, all the cores execute the
same instructions, but on different data sets.

V. IMPLEMENTATION

A. Reception and transmission of packets
Packets are received and transmitted using netmap ring

structures. In the case of reception, application reads packet
descriptors starting from the head pointer. Head pointer is
incremented whenever a packet is read. When head pointer
reaches tail pointer, synchronization is initiated through
ioctl system call. Synchronization represents an exchange

4 Telfor Journal, Vol. 9, No. 1, 2017.

of slots between netmap and NIC rings. After
synchronization, application will receive a new set of slots
for processing.

On the transmission side, the opposite procedure is
performed. Application writes packets between head and
tail pointers. When the head pointer reaches tail,
synchronization is triggered. Through synchronization,
empty slots from the NIC rings and filled slots from the
netmap rings are exchanged.

B. Packet processing
From each packet, source and destination MAC

addresses are extracted. If the destination MAC address is
not appropriate, i.e. the packet destination MAC address
does not match the port MAC address, this packet is
discarded. Afterwards, it is determined if the packet has an
IP header, and if all of its flags are set correctly.

IP lookup is performed based on the destination IP
address. The result is information about the next hop device
to which the packet should be forwarded and through which
port. According to the next hop information, new MAC
addresses will be obtained, and they will be inserted into the
Ethernet header.

In order to avoid costly system calls, frequent function
calls are avoided. Function calls cause huge overhead by
putting current processor context and arguments on stack.
Therefore, each function in the time-critical section of code
should be implemented as inline. Additionally, packets are
not copied at all throughout the application.

C. IP lookup procedure
IP lookup tables are often implemented as binary tries

[8]. These structures have nodes that represent IP prefixes.
The depth of node is the number of network bits in a prefix.
If the route exists for a certain prefix, then, the
corresponding node will have the route assigned. All
subtries with the nodes without assigned routes can be
deleted.

Lookup procedure starts from a root node in a trie.
Destination IP address is examined bit by bit, starting from
the MSB. If the bit is 0, algorithm will examine left child
node, if it is 1, it will examine the right child node. If the
examined node has been assigned a route, it will become a
new longest prefix node. The procedure is repeated for the
child node of the examined node that corresponds to the
following IP destination address bit. Algorithm ends when
there are no more child nodes to be examined. The result of
the algorithm is the route of the longest prefix node.

The IP lookup based on binary trie might take a long
time. In the worst case, 32 reads are necessary from the
shared memory. For this reason, multibit trie structures are
preferred [8]. Multibit trie structures are similar to binary
tries, but each node has multiple children nodes whose
number is denoted as stride. Usually, stride is power of 2.
By using this technique, the maximal number of memory
reads is reduced to 32/stride.

Search algorithm using multibit tries is similar, now in
each step of the algorithm stride of bits is examined. With
the increase of the stride length, the lookup speed increases,
as well as the memory consumption. Usually, the stride

length is a trade-off between memory size and lookup
speed.

D. Parallelization
Netmap framework allows opening a separate file

descriptor for each ring. One thread will be in charge of one
Rx/Tx ring pair per each port. Thread will only perform
synchronization for its own set of rings.

Parallelization is based on the RSS mechanism for
forwarding packets from input FIFO into different Rx
queues (rings). Each thread will be in control of one Rx ring
from each port. Depending on the routing decision, thread
will forward a packet to one of the available ports. Each
thread will also control one Tx ring from each port.

We have designed two different parallelized IP lookup
applications – the first one is parallelized by means of
POSIX threads, at low level, and the second one is
parallelized by means of OpenMP, at high level. Our goal
was to compare which parallelization method is better to
use for the applications that require high packet processing
speeds.
1) POSIX threads application

In the first application, parallelization is implemented by
means of POSIX threads. The first part of the program is
the initialization procedure. Each thread is created through
pthread_create function. Afterwards, all threads are
initialized. Each thread is configured to be cancelled in a
deferred way. Deferred cancellation means that the thread
will cancel itself slightly later after the request of the main
thread, in order to avoid data corruption. Threads will
terminate themselves only in parts of the code that are not
time-critical. As a part of thread cancellation, the clean-up
routine will be executed in order to release allocated
resources. Clean-up routine is pushed to the thread’s private
stack during the initialization.

The main task of each thread is packet routing, where
each thread performs the procedures explained in sections
B and C. All threads calculate the number of routed packets,
and write the values to a shared memory. After the
synchronization procedure, each thread calls the
pthread_testcancel function to check whether it should
terminate. Additionally, the main thread is calculating the
total number of routed packets by adding the number of
packets routed on all threads.

The user requests the termination of program through the
SIGTERM signal. Each second, the main thread is checking
status of this signal. If the termination of the program has
been requested, the main thread will call pthread_cancel
function. This function announces to the other threads that
they should terminate themselves. The main thread will,
then, wait for this condition blocked on pthread_join
function. Afterwards, it will terminate itself.
2) OpenMP application

Pthreads are the low level parallelisation method which
provides finer control of the behaviour of the threads.
However, this API can be quite complex to use. It is much
easier to parallelize the program at the higher level, in the
OpenMP environment.

We have parallelized the program through the use of the
parallel OpenMP sections (#pragma parallel omp), as each

Vesović et al.: Speeding Up IP Lookup Procedure in Software Routers by Means of Parallelization 5

thread performs essentially the same packet processing
routine. The main thread is different, as it has to calculate
the routing speed and check for the termination signal. This
part of the code is isolated by the pragma #pragma omp
master. Upon receiving SIGTERM signal, the main thread
sets a shared variable, which should be examined later as a
condition to exit the packet processing while loop. All the
threads will terminate themselves at that point in code, thus
eliminating the problem of possible data corruption.

E. Accessing routing table
Access to the shared variables must always be

synchronized in order to avoid race conditions. For that
purpose, pthreads offer low-level mutex and spinlock
objects. Accessing shared data through locking objects in
time-critical section of the code is not favourable as it
inhibits the routing speed. Therefore, locking operations
should be avoided in the parts related to packet processing,
if possible.

Shared variables in OpenMP are accessed and modified
through the lightweight atomic instructions. The critical
sections were avoided as much as possible, as they
introduce serial executions in the code. Critical section is
necessary only in the part of the code related to the opening
of file descriptors, which is acceptable as this procedure is
not in the time-critical code section.

In the case of our parallelized IP lookup application, the
shared resource is the IP lookup table. Accessing the lookup
table from all threads is safe, because none of them is
modifying its content. However, control plane routing
protocols must change routing table on the fly. For this
reason, accessing routing table from data plane threads must
be prohibited during the routing table update by control
plane. When the main thread receives a request for table
modification, it will stop execution of all data plane threads,
until the routing table update is finished.

VI. TESTING ENVIRONMENT
Three server machines were used, with characteristics

given in Table 1. The first server is used as a packet
generator. It generates packets on two ports with 10 Gbit/s
rate per port. The second server is a software router with the
installed IP lookup application. Router has four ports. It is
configured to forward all the traffic received on the first two
ports to the remaining 2 ports. This configuration does not
reflect real life scenarios, but it is suitable to test the limits
of a software router. The third server is used as a packet
sink, and to measure the speeds at which the routed packets
arrive.

Fig. 3. Testing environment.

The first server generates TCP packets using DPDK

packet generator [3]. Packets are generated with the highest
packet rate necessary to saturate 10 Gbit/s links. The packet
rate can be calculated according to (1):

()8 20

bitRatepktRate
pktSize

=
⋅ +

 (1)

where pktRate and bitRate are the packet and bit rates
respectively, and pktSize is the packet size. The constant 20
comes from 20B of interpacket gap, preamble and start of
frame delimiter in Ethernet frames. Maximal packet rate
available on 10 Gbit/s link is 14.88 Mpps, which is
achieved for the minimal size Ethernet frames of 64 B. In
the case where two ports are used, this results in 29.76 Mpss
in total.

TABLE 1: CHARACTERISTICS OF TEST MACHINES

 packet_generator packet_receiver software router

Processor Intel Core i7-
3770K

2x Intel Xeon E5-
2620

Intel Core i7-
3770K

of Cores 4 per CPU 6 per CPU 4 per CPU
of
Threads 8 per CPU 12 per CPU 8 per CPU
Frequency 3.5 GHz 2.0 GHz 3.5 GHz

Cache
size

L1 = 32K + 32K
L2 = 256 KB
L3 = 8 MB

L1 = 32K + 32K
L2 = 256K
L3 = 15M

L1 = 32K + 32K
L2 = 256 KB
L3 = 8 MB

RAM size 16GB DDR3
@ 1600 MHz

16GB DDR3
@ 1066 MHz

8GB DDR3
@ 1333 MHz

NIC

Name:
AOC-STGN-i2S
Controller:
Intel 82599
Number of ports: 2
Speed:
10 Gbit/s per port

Name:
AOC-STG-i4S
Controller:
Intel XL710-AM1
Number of ports: 4
Speed:
10 Gbit/s per port

Name:
AOC-STG-i4S
Controller:
Intel XL710-AM1
Number of ports:
4
Speed: 10 Gbit/s
per port

OS CentOS Linux 7 Ubuntu 14.04 Ubuntu 14.04

Two different sets of tests were performed. In the first

set, packets were generated on one port of the packet
generator only. In the second set, packets were generated on
both ports. For each set, tests were conducted for different
packet lengths: 64 B, 128 B, 256 B, 512 B, 1024 B and
1500 B. For a given packet size, tests were repeated for
different number of flows: 1, 2, 4, 8, 16, 32 and 64. Flows
are separated according to the source TCP address.

Software router receives all the packets on the two ports,
and forwards them to the other two ports, as depicted in Fig.
3. Software router has 8 logical cores, and also 8 input and
output queues per port. IP lookup table is realized using
multibit trie structures, with stride length equal to 4. IP
lookup table is filled with 16777216 routes. This table does
not reflect any practical situation, but it is useful for testing
as it requires the most read-outs from memory per packet.
Each of these routes specify server 1 as the next hop device.

VII. RESULTS AND DISCUSSION
We have measured speeds of the IP lookup in Linux

kernel, IP lookup netmap application parallelized with
Pthreads, IP lookup netmap application parallelized with
OpenMP, and the speeds the packet transfers from one port
to another without any modifications. The last value shows

6 Telfor Journal, Vol. 9, No. 1, 2017.

the maximal performance that the netmap framework may
achieve. All measured values are compared with
theoretically maximal packet rate which will saturate
10 Gbit/s links. Each test case is run for 10 seconds, and the
average value of packet rate is calculated.

Fig. 4 shows packets rates of the IP lookup application
parallelized with Pthreads, IP lookup application
parallelized with OpenMP, IP lookup in Linux kernel,
packet forwarding without packet modification in netmap
(netmap bridge) and theoretically maximal packet rates in
the case when one data flow is generated. In Fig. 5 packet
rates are shown for the same applications and 64 data flows
generated on one port. Packet rates are expressed in mega
packets per second (Mpps).

From Fig. 4, we can see that the netmap bridge
application is able to forward the packets with theoretically
maximum packet rates. This confirms that the netmap itself
is able to support such speeds. The performance of the
applications parallelized by means of pthreads is almost
identical to the OpenMP application, i.e. parallelization at
higher level has not degraded routing performance.

The worst case situation for parallel applications is when
one data flow is used, i.e. when no processing could be done
in parallel. Maximal forwarding performance is around 3.8
Mpps, which is approximately four times lower than the
maximal value. For the packets larger than 309 B, maximal
achievable packet rates are reached. Parallelized
applications perform the best when many data flows are
used (Fig. 5). In this case, both parallel applications achieve
maximal 14.88 Mpss rate.

The routing speed of the Linux kernel for one data flow
is 1.06 Mpps, which is 14 times lower than the theoretically
maximal value. For 64 data flows, the routing speed of
Linux kernel improves, rising to 4.09 Mpps, which is
3.6 times lower than the maximum speed. By this, we have
confirmed that Linux kernel indeed is not suitable to
forward 10 Gbit/s traffic.

We also performed tests in which the data is generated
on two ports. In Fig. 6, we have shown the forwarding
speeds for the case where one data flow per port is
generated. In Fig. 7, we have shown the forwarding speeds
for 64 data flows per port. Tested applications are the same
as in the previous graphs.

Fig. 4. Performance of IP lookup applications for different

packet lengths and one data flow generated on one port.

Fig. 5. Performance of IP lookup applications for different

packet lengths and 64 data flows generated on one port.

In the case of one data flow per port (Fig. 6), it may be
observed that the maximal forwarding speed of the netmap
framework is 29.61 Mpps. This is slightly lower than the
theoretically maximal packet rate for 64 B Ethernet frames
for two ports, equal to 29.76 Mpps. The pthreads
parallelized netmap IP lookup application achieves a
forwarding speed of 7.38 Mpps, while the OpenMP
parallelized application similarly achieves 7.49 Mpps.

Parallelized applications are approximately four times
faster than the Linux kernel with the packet rate of
1.91 Mpps. Additionally, the IP lookup table in netmap
application requires the maximal number of memory
cycles, while the IP lookup kernel table is filled with static
routes.

With the increase of packet length, it can be observed that
the netmap performance approaches theoretically maximal
values, while the performance of the IP lookup application
and kernel IP lookup are the same as in the case of 64 B
packets. For the packets longer than 512 B, the netmap IP
lookup application reaches theoretically maximal packet
rates. This is not the case for the Linux kernel, which cannot
achieve maximal packet rates for any packet length.

Fig. 6. Performance of IP lookup applications for different
packet lengths and one data flow generated on each of the

two ports.

In the case of the parallelized IP lookup (Fig. 7), the
performance of the IP lookup in kernel and IP lookup in
netmap are improved. For the 64 B packets, and 64 data
flows per port, the forwarding speed of the netmap IP
lookup parallelized by pthreads is 25.14 Mpps and the
forwarding speed of the parallelized by the OpenMP is

0
2
4
6
8

10
12
14
16

64 128 256 512 1024 1500

pa
ck

et
 ra

te
 [M

pp
s]

packet size [B]

1 port / 1 flow

theoretically maximal netmap bridge application
packet forward application (pthreads) packet forward application (OpenMP)
kernel

0
2
4
6
8

10
12
14
16

64 128 256 512 1024 1500

pa
ck

et
 ra

te
 [M

pp
s]

packet size [B]

1 port / 64 flows

theoretically maximal netmap bridge application
packet forward application (pthreads) packet forward application (OpenMP)
kernel

0

5

10

15

20

25

30

35

64 128 256 512 1024 1500

pa
ck

et
 ra

te
 [M

pp
s]

packet size [B]

2 ports / 1 flow per port

theoretically maximal netmap bridge application
packet forward application (pthreads) packet forward application (OpenMP)
kernel

Vesović et al.: Speeding Up IP Lookup Procedure in Software Routers by Means of Parallelization 7

25.26 Mpps. Once again, there are no observable
differences between the applications parallelized in
different manners. For the same test case, the forwarding
speed of the IP Linux kernel is 4.05 Mpps, which means
that the netmap IP lookup is approximately six times faster
than the Linux IP lookup.

By leveraging the parallelization potential, i.e. RSS
mechanism, we achieve more than three times better lookup
speedup compared to the case when RSS is not used.

Fig. 7. Performance of IP lookup applications for different
packet lengths and 64 data flows generated on each of the

two ports.

Fig. 8. Performance of IP lookup applications for different
packet lengths and one data flow generated on each of the

two ports.

We have concluded that the forwarding speeds are
improving with the increase in the number of flows, thanks

to the parallelization. In Fig. 8, we can see how packet rates
scale with the increase in the number of flows per port. The
limit is achieved for the number of flows per port equal to
4, both for the netmap applications, and the Linux kernel.

VIII. CONCLUSION
In this paper, we have shown one efficient realization of

the IP lookup in user space by using fast I/O frameworks
and parallelization. We demonstrated that the routing speed
of the user space application is approximately four times
better than the Linux kernel routing speed, in the critical
case of minimal 64B packets. The results show that the
parallelized application is more than three times better than
the sequential one. Finally, we concluded that it is much
easier to perform parallelization for packet processing
applications on a higher level, without introducing
performance penalty.

REFERENCES

[1] E. Guillen, A. M. Sossa and E. P. Estupiñán “Performance Analysis

over Software Router vs. Hardware Router: A Practical Approach,”
Proceedings of the World Congress on Engineering and Computer
Science, vol. 2, pp. 24-26, 2012.

[2] L. Rizzo, "Netmap: a novel framework for fast packet I/O," in 21st
USENIX Security Symposium (USENIX Security 12), 2012.

[3] Intel Corporation, “DPDK – Data Plane Development Kit,” [Online].
Available: http://dpdk.org/. [Accessed 28.04.2016].

[4] S. Han, K. Jang, K. Park and S. Moon, "PacketShader: a GPU-
accelerated software router," ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 195-206, 2011.

[5] R. Buchty, V. Heuveline, W. Karl and J. Weiss, "A survey on
hardware-aware and heterogeneous computing on multicore
processors and accelerators", Concurrency and Computation:
Practice and Experience, vol. 24, no. 7, pp. 663-675, 2011.

[6] Blaise Barney, Lawrence Livermore National Laboratory, "POSIX
Threads Programming", 17. June 2016. [Online]. Available:
https://computing.llnl.gov/tutorials/pthreads/.
[Accessed 07.07.2016].

[7] Intel Corporation, Networking Division, "Intel® Ethernet Controller
X540 Datasheet", January 2016. [Online]. Available:
http://www.intel.com/content/www/us/en/embedded/products/netw
orking/ethernet-x540-datasheet.html. [Accessed 07.07.2016].

[8] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous, "Survey and
taxonomy of IP address lookup algorithms," IEEE network, vol. 15,
no. 2, pp. 8-23, 2001.

[9] M. Vesović, A. Smiljanić and M. Tomašević, “Speeding up IP
lookup procedure in software routers by means of parallelization,”
2016 24th Telecommunications Forum (TELFOR), Belgrade, 2016,
pp. 1-4.

0

5

10

15

20

25

30

35

64 128 256 512 1024 1500

pa
ck

et
 ra

te
 [M

pp
s]

packet size [B]

2 ports / 64 flows per port

theoretically maximal netmap bridge application
packet forward application (pthreads) packet forward application (OpenMP)
kernel

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64

pa
ck

et
 ra

te
 [M

pp
s]

number of flows

2 ports / 64B

theoretically maximal netmap bridge application
packet forward application (pthreads) packet forward application (OpenMP)
kernel

