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Abstract — In this paper, we analyze applicability of single- 

and two-hidden-layer feed-forward artificial neural networks, 
SLFNs and TLFNs, respectively, in decoding linear block 
codes. Based on the provable capability of SLFNs and TLFNs 
to approximate discrete functions, we discuss sizes of the 
network capable to perform maximum likelihood decoding. 
Furthermore, we propose a decoding scheme, which use 
artificial neural networks (ANNs) to lower the error-floors of 
low-density parity-check (LDPC) codes. By learning a small 
number of error patterns, uncorrectable with typical decoders 
of LDPC codes, ANN can lower the error-floor by an order of 
magnitude, with only marginal average complexity incense.  

Keywords — error-floors, neural networks, linear block 
codes, low-density parity-check codes, ML decoding. 

I. INTRODUCTION 

HE artificial neural networks (ANNs) are a popular 
mathematical concept used to solve various complex 

engineering problems, related to regression and 
classification of collected data. ANNs can be applied 
without substantial knowledge of the data (for example 
dependencies among data samples), why they are called 
universal approximators. Topological structure of feed-
forward ANNs provides sufficient degrees of freedom to 
represent any continuous function with arbitrary precision. 
Early works, like Cybenko’s [1], showed that even single 
hidden-layer feed-forward neural networks (SLFNs) 
preserve the universal approximation capability. 
Approximating discrete functions with SLFNs can be 
accomplished with the number of hidden-layer neurons 
equal to the number of data samples of the discrete 
function [2]. The complexity of SLFNs limits their 
applicability, especially given the fact that the worst-case 
dimension of two-hidden-layer feed-forward neural 
networks (TLFNs) is O(pM), where M is the number of 
function samples, as shown by Huang [3]. Incensing the 

number of hidden layers potentially reduces the overcall 
complexity of the network, however, we are unaware of the 
formal proof and limit our discussion to SLFNs and TLFNs. 

The problem of maximum likelihood (ML) decoding is a 
special case of classification problem. However, decoding 
of an arbitrary linear block code is not the typical use case 
for ANN classification, given the fact that the number of 
classes (codewords) increases exponentially with the length 
of the code. In addition, a classification error (residual 
frame error rate) usually needs to be 10-5 or lower, which is 
hard to achieve, when training is performed on a limited set 
of data. Thus, most of the relevant work is oriented to 
improving existing decoders, by learning (via ANN) 
specific decoding features.  

A belief propagation (BP) decoder can be transformed 
into a sparse neural network, with a small number of 
learnable weights, as noticed by Nachmani et al. [4]. 
Following the same idea, Lugosch and Gross [5] showed 
that the error-rate of min-sum decoding can be reduced if 
parts of the decoder are organized as neurons of a sparse 
neural network. In a more sophisticated approach, Xiao et 
al. [6] used a recurrent quantified ANN to design finite 
alphabet iterative decoders applied for decoding low-
density parity-check (LDPC) codes. Their work showed 
that the major benefit of employing ANNs is to increase the 
convergence speed of iterative decoding. In another 
research direction, Liang et al. [7] entangled a BP decoder 
and a convolutional ANN in a decoding loop. After a 
predefined number of iterations, BP transmits codebit 
decisions to the ANN, whose task is to estimate channel 
noise and pass it back to the BP decoder for additional 
processing. Although the proposed decoding scheme is 
superior, compared to the BP decoder, its complexity is 
high. He in [8] found another application of ANNs for 
decoding LDPC codes, where ANN was used to predict 
decoding failures and estimate bit positions for bit-flipping 
that will hopefully help the min-sum decoder – the main 
error correction algorithm in the proposed scheme. Finally, 
Buchberger et al. in [9] proposed a decimation strategy 
(learned via ANN), which enables the min-sum decoder to 
perform close to ML decoding bound, for short LDPC 
codes. 

In this paper we examine the applicability of SLFNs and 
TLFNs in decoding of linear block codes in general, and 
specifically LDPC codes. Based on the provable learning 
capability of ANNs we examine the complexity of the 
network required to perform ML decoding on a binary 
symmetric channel (BSC) and compare it with the trellis-
based ML decoder. Furthermore, we show how an ANN can 
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be used to lower error- floors of LDPC codes. Namely, we 
propose a decoding scheme in which ANN is used for post-
processing, and every time an iterative LDPC decoder fails 
to correct channel induced errors, ANN-based decoder is 
turned on. Given the fact that the error-floors of LDPC 
codes are mostly influenced by uncorrectable error patterns 
with lowest weights, and that the number of such error 
patterns in usually not high, ANN can be trained to learn all 
of them and, consequently, reduce the error-floor by the 
order of magnitude, with only a marginal increase in 
complexity per transmitted codeword. Contrary to [8], 
where the ANN learns the decoding features through 
excessive simulations, our approach relies on pre-computed 
trapping set profiles, which have been studied intensively 
over the past years [10]–[13]. Thus, to apply an ANN-based 
post-processor one needs to collect specific low-weight 
error patterns, which is feasible for a variety of LDPC codes 
and decoders, as recently shown by Raveendran et al. [10]. 

Is should be noted that major parts of this paper have 
been presented at 2021 Telecommunication forum 
(TELFOR) [14], while here we extended numerical results 
and explained some of the ideas in more detail.   

The rest of the paper is organized as follows. In Section 
II preliminaries about LDPC codes and decoders on graphs 
are given. Section III is dedicated to performance analysis 
of decoding with SLFNs, while we discuss TLFN decoders 
and their applicability in reducing error floors of LDPC 
codes in Section IV. Concluding remarks are given in 
Section V. 

II. PRELIMINARIES 

Consider a binary linear block code (n, k), with code rate 
R = k/n, described by its parity check matrix H. Let 
c=(c1,c2…,cn) be a valid codeword of the code, transmitted 
through BSC with crossover probability p. Receiver collects 
sequence r, where Pr{ci=ri}=1-p, 1 ≤ i ≤ n. The ML decoder 
finds the closest valid codeword as 
 ).|(maxargˆ rcPc

c
  (1) 

ML decoding can be performed on trellis structure, 
constructed based on H. States of a trellis at depth t, 0 ≤ t ≤ 
n are formed as follows 
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where ht corresponds to the t-th column of H. A trellis path 
(among total 2k paths) corresponds to a codeword of the 
code. There are at most 2n-k states at every trellis depth. 
Running Viterbi algorithm on the described trellis solves 
Eq. (1).  

Decoders of LDPC codes are commonly run on bipartite 
graphs, called Tanner graphs, in order to exploit sparsity of 
H. A bipartite graph is ),( ECVG  , where V={v1,v2,…vn} 

is a set n of variable nodes (columns of H), C = {c1,c2,…,cm} 
is a set of m check nodes (rows of H). An edge Ee  
connects vi and cj (e = (vi,cj)) iff hij=1. We denote a set of 
neighbors of a node  CVx   as N(x), whose cardinality 

|N (x)| is called the degree of the node x. Specially, average 
degree of variable nodes is denoted by . An iterative 

decoder D is defined as 5-tuple D = (M,Y,Φ,Ψ, ̂ ), where 
M and Y denote internal message and channel alphabets, 
respectively. Update functions implemented in variable and 
check nodes are Φ and Ψ, respectively, while ̂  is a bit 
decision function. A decoding iteration corresponds to 
message exchange between all neighboring nodes in Tanner 
graph, and thus, during the l-th iteration a variable v sends 
message to its neighbour c, )(l

cv  and receives from the 

opposite direction )( l
vc . Messages are calculated as 
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 m . The decoder is run for Niter iterations. By 

varying alphabets and update node functions, distinct 
decoders with various complexity-performance tradeoffs 
can be constructed. For example, Gallager-A/B is 
considered to be low a complexity solution, while offset 
min-sum decoder has high error correction capability.   

III. DECODING OF LINEAR BLOCK CODES WITH SLFNS 

A codeword ci of linear block code can be projected to a 
line and seen as a decimal number  1,0)( d

ic . Analogously, at 

channel output decimal number Ir d )(  in range I=[0,1] can 

appear. The distance between two channel outputs )( d
ir  and 

)(d
jr  satisfies nd

j
d

i rr 21|| )()(  . The decoding is equivalent 

to a classification problem in which I is divided to 2k 
disjoint measurable intervals P1,P2,…,P2k. Note that Pi may 
not be continuous. The decoder can be represented as a 
function f 
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Consider a feed-forward ANN with a single hidden layer 
constructed to mimic f(x). The neural network is a finite 
linear combination of the form 
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where αj, wj and θj are fixed real numbers, and σ(ꞏ) is any 
continuous function satisfying 
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Let FERML be a frame error rate (FER) of the ML 
decoder. The following theorem shows that a previously 
defined ANN can mimic a ML decoder with a negligible 
error. 

Theorem 1. There exists artificial neural network G(x), 
which produces frame error rate FERANN , and under the 
assumption of uniformly transmitted codewords, satisfies 
|FERANN-FERML|≤p(1-p)n-1/2k. 

Proof: By Cybenko’s theorem [1] we know that there 
exist network G(x) and interval D ⊂ I for which  
|G(x) - f(x)|<ε for all Dx , for any arbitrary ε. 
Furthermore, Lesbegue measure of D is m(D)≥1-ε. This 
means that neural network can classify almost all inputs in 
almost all x domains. Note that decoding on BSC is less 
rigorous – it only requires classification on a set with 
discrete inputs values. For all ε</2(k-2), G(x) will 
successfully classify every received sequence from the 
channel Dx , since the network will give the result closest 
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to value (codeword) produced by the ML decoder. Given 
the fact that Cybenko’s theorem does not guarantee the 
locations of interval D, it is possible that outside D there 
exist discrete points, which will be incorrectly classified. It 
follows that, under the same condition for ε< 1/2(k-2), at most 
one such point exists. It is reasonable to assume that if a 
valid codeword remains outside of D, its presence can be 
detected by the simple syndrome checker, meaning that the 
ANN will not be used. The highest discrepancy between 
FERANN and FERML will be observed when outside of D 
remains a number closest to a valid codeword c0, denoted 
by x’. Probability that channel creates such sequence is 
P(c0)P(x’|c0) = p(1-p)(n-1)/2k. Note that x’ can be observed 
even if codewords other than c0 are transmitted; however, 
in those cases ML decoder will also fail to correctly decode 
the codeword. 

The following theorem reveals the number of neurons 
that a SLFN should have, in order to learn the ML decoding. 

Theorem 2. There exists SLFN, with 2n-2k neurons, that can 
lean the ML decoding. 

Proof: Proof follows directly from [2], where it was 
shown that every one-dimensional discrete function with M 
samples can be accurately represented by 2-layer neural 
network with exactly 2M+1 weights and ReLu activation 
function in each node of the hidden layer. The number of 
nodes in the network is equal to M. In order to learn the ML 
decoding the SLFN needs to learn all M=2n-2k error 
patterns. 

The previous theorem shows that in case of the SLFN, 
the number of required neurons grows linearly with the size 
of training sample set. If we aim to learn the ML decoder, 
the complexity of the network is O(2n), where n denotes the 
length of code. We next compare the complexity of neural 
network, with a trellis-based decoder. Given the fact that 
complexity of either ANN or trellis-based decoder is 
proportional to the number of branches on the graph, we 
compare two decoding approaches in terms of total graph 
branches. The ML decoder requires at most 2(n-k)+1n 
branches, thus, based on Theorem 2, the total number of 
error patterns correctable by the SLFN, E, must satisfy 
E<2n-k+logn, if we want to achieve complexity reduction, 
compared to trellis-based decoder. Formally, the following 
corollary defines code parameters for which we can achieve 
complexity reduction if we want to learn the complete space 
of 2n samples.  

Corollary 1. There exists a single-layer neural network 
capable to learn the ML decoding with fewer branches than 
trellis-based ML decoder if k<log2 n. 

The above constraint gives us only provable complexity 
reduction achieved by employment of SLFNs. However, 
this does not necessarily mean that if k≥log2n, the 
complexity reduction cannot be achieved. If Fig. 1 we show 
boundary code rates, as a function of code lengths, for 
which we can provably reduce complexity of the ML 
decoder by using SLFNs. We can observe that clear 
complexity reduction can be achieved only for shorter 
codes, while boundary code rates converge to zero. 

 
Fig. 1.Illustration of Corollary 1 

IV. DECODING OF LINEAR BLOCK CODES WITH TLFNS 

In this section we examine the possibility of employing 
TLFNs for the problem of decoding linear block codes. The 
main advantage of TLFNs is that they can be constructed 
with a smaller total number of nodes, compared to SLFNs 
with the same learning capabilities. Namely, Huang [3] has 
shown that to learn E input samples, it is possible to 
construct a network with one output node and L1 and L2 
nodes in the first and the second hidden layers, respectively, 
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Compared to the SLFN, the TLFN has approximately 33% 
fewer branches. However, for the majority of significant 
linear block codes, a trellis-based structure appears to be 
less complex. We next verify the above complexity by 
building the TLFN that tries to learn the ML decoding of 
Euclidian Geometry (EG) LDPC code of length n=15. We 
used the ReLu activation function in the first hidden layer 
and the sigmoidal function in the second hidden layer, while 
a mini-batch-based learning process is equipped with the 
Adam optimizer. The training set is composed of all 
possible input sequences, i.e., E=215. It can be shown that 
the EG code can achieve FERML=4×10-4, for p=0.01. We 
change the number of nodes in the ANN to obtain  
FERANN= FERML, which is shown in Fig. 2. We can see that 
600 nodes (100 in the first hidden layer plus 500 in the 
second hidden layer) is sufficient to replicate the reliability 
of the ML decoder, which is slightly less than predicted 
with the analytical formula, which states that 628 
(523+105) nodes are required. Further reduction of the 
ANN complexity does not enable learning the ML for all E 
inputs (Fig. 2). 

From the above analysis it follows that ANNs can be 
useful if the number of training samples is small, which 
means that we can train the ANN to correct only a portion 
of error patterns, while the majority of error patterns is 
corrected by the other, less complex decoder. Iterative 
decoders D of LDPC codes correct the majority of errors, 
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Fig. 2. FER achieved with different TLFNs. 

but fail to correct specific error patterns, that correspond to 
trapping sets of nodes on the Tanner graphs. Trapping sets 
determine the code performance when channel error 
probability is low, i.e., we say that the decoder operates in 
the error-floor region. A trapping set is defined as a 
subgraph, which contains all the errors in the received 
sequence. However, all the variable nodes in the trapping 
set may not be erroneous. Trapping sets depend on the code 
structure and on the decoding rules. The biggest influence 
on code performance is made by the uncorrectable error 
patterns with the lowest weights. If we denote by t the 
weight of the lowest uncorrectable pattern, FER in the error-
floor region can be approximated by [15] 

,loglog ptcteFER   

where ct represents the number of weight-t error patterns 
that cannot be corrected by D. Numerous methods are 
proposed to determine the numbers t and ct, and usually 
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 It follows that ct error patterns can be corrected 

by the ANN, with a relatively small number of nodes. Thus, 
we propose a decoding approach in which the sequence 
received from the channel is decoded by D, and in case of 
decoding failure the output of D is sent to the ANN, 
previously trained on a set of uncorrectable error patterns 
Bt. The cardinality of the training set depends on the code 
structure and decoder type. In some cases, iterative 
decoding converges to a fixed trapping set, i.e., after some 
iteration all messages exchanged by nodes in the Tanner 
graph do not change. For example, when the Margulis code 
is coupled with Gallager-B decoder, all weight-4 
uncorrectable error patterns will cause the decoder to be 
stuck in a fixed trapping set. For such cases, to eliminate the 
lowest-weight error patterns, the cardinality of the training 
set is |Bt|=ct. For other cases it is possible that the decoding 
process oscillates between erroneous states. This means that 
to correct an error pattern, ANN needs to learn all the 
possible outcomes of D that correspond to that error pattern. 
Thus, the cardinality of the training set is bigger than ct, and 
can be determined after careful enumeration. All in all, after 
ANN-based decoding FER is reduced to 
exp(logct+1+(t+1)log p).  

It should be emphasized that the average number of 
channel errors per codeword is pn, which is usually much 
larger than t. This means that weight-t error patterns are 
rare, and do not directly influence the code performance. 
However, during the decoding error patterns with larger 
weights are reduced to weight-t error patterns. This is the 
reason why we do not send the sequence received from the 
channel to the ANN decoder, rather the output produced by 
D. The proposed serial concatenation of D and ANN 
decoder, dramatically increase the worst-case complexity of 
decoding. However, we argue that the average complexity, 
determined by the average number of graph branches, is 
only marginally increased. The average number of used 
graph branches can be calculated as follows 
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where the first term represents the contribution of D, and 
the second the average complexity of the ANN decoder, 
while FERT denotes FER without employment of the ANN. 
We can also define the relative complexity increase ψ as 

%.100)1)(( ,  nNN iteravgb   

We next examine complexity increase for different codes 
and D decoders. This is illustrated in Table I. At this point 
we do not provide a detailed description of our example 
codes but refer to referent works for more details. The 
average complexity of the proposed decoding approach is 
negligibly higher, if we aim to correct low-weight error 
patterns. On the other hand, adding ANN reduces the error 
rate for an order of magnitude, in the error-floor region. For 
example, for code C1 and p=0.01, eliminating ct=4 error 
patterns lowers error rate from FER≈1.9×10-4 to FER 
≈1.4×10-5. To further illustrate the benefit of ANN-
enhanced decoders, we conduct Monte Carlo simulation 
and evaluate the performance of the C5-Margulis code. The 
results of the simulation are presented in Fig. 3. We observe 
that applying ANN to correct residual weight-4 error 
patterns reduces the error floor of the Margulis code by the 
order of magnitude. A similar conclusion also holds for 
other codes, for example the C2-Tanner code, depicted in 
Fig. 4. We have shown that employment of ANN as a post-
processing element reduces the gap between the Gallager-
B decoder and the much more complex Min-Sum decoder. 

V. CONCLUSION 

In this paper we have examined the possibility of using 
TLFNs and SLFNs in decoding linear block codes. We have 
shown that current knowledge of TLFNs and SLFNs cannot 
guarantee the performance of ML decoding, with 
significantly lower complexity than trellis-based decoding. 
On the other hand, TLFNs can be an efficient post-
processing block in decoding LDPC codes and lower error-
floors with small complexity penalty. Future work will 
involve more elaborate examination of employing ANNs in 
decoding practically significant LDPC codes and 
possibility of involving deep neural networks into decoding 
process. 
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TABLE 1: Complexity increase for different LDPC codes 
Code Decoder n R t ct |Bt| ct+1 ψ for FER=10-5 

C1-QC [10] Offset min-sum 18432 0.903 4 19232 19232 15712 0.0015% 
C2-Tanner [10]  Gallager-A/B 155 0.4 3 155 310 456 0.007% 

C3-MacKay [12] Gallager-A/B 1008 0.5 3 179 193 1215 0.00008% 
C4-MacKay [12] Gallager-A/B 816 0.5 3 173 212 1372 0.00008% 
C5-Margulis [12] Gallager-A/B 2640 0.5 4 1320 1320 11088 0.0001% 

C6-QC [12] Gallager-A/B 900 0.5 3 50 100 675 0.000012% 
C7-QC [13] Gallager-A 200 0.5 3 1434 2868 N/A 0.0015% 

 

 
Fig. 3. Performance of ANN-based decoder - C5 code. 

 
Fig. 4. Performance of ANN-based decoder – C2 code. 
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