
Telfor Journal, Vol. 14, No. 2, 2022. 51

Original scientific paper

Abstract — In this paper, we analyze applicability of single-

and two-hidden-layer feed-forward artificial neural networks,
SLFNs and TLFNs, respectively, in decoding linear block
codes. Based on the provable capability of SLFNs and TLFNs
to approximate discrete functions, we discuss sizes of the
network capable to perform maximum likelihood decoding.
Furthermore, we propose a decoding scheme, which use
artificial neural networks (ANNs) to lower the error-floors of
low-density parity-check (LDPC) codes. By learning a small
number of error patterns, uncorrectable with typical decoders
of LDPC codes, ANN can lower the error-floor by an order of
magnitude, with only marginal average complexity incense.

Keywords — error-floors, neural networks, linear block
codes, low-density parity-check codes, ML decoding.

I. INTRODUCTION

HE artificial neural networks (ANNs) are a popular
mathematical concept used to solve various complex

engineering problems, related to regression and
classification of collected data. ANNs can be applied
without substantial knowledge of the data (for example
dependencies among data samples), why they are called
universal approximators. Topological structure of feed-
forward ANNs provides sufficient degrees of freedom to
represent any continuous function with arbitrary precision.
Early works, like Cybenko’s [1], showed that even single
hidden-layer feed-forward neural networks (SLFNs)
preserve the universal approximation capability.
Approximating discrete functions with SLFNs can be
accomplished with the number of hidden-layer neurons
equal to the number of data samples of the discrete
function [2]. The complexity of SLFNs limits their
applicability, especially given the fact that the worst-case
dimension of two-hidden-layer feed-forward neural
networks (TLFNs) is O(pM), where M is the number of
function samples, as shown by Huang [3]. Incensing the

number of hidden layers potentially reduces the overcall
complexity of the network, however, we are unaware of the
formal proof and limit our discussion to SLFNs and TLFNs.

The problem of maximum likelihood (ML) decoding is a
special case of classification problem. However, decoding
of an arbitrary linear block code is not the typical use case
for ANN classification, given the fact that the number of
classes (codewords) increases exponentially with the length
of the code. In addition, a classification error (residual
frame error rate) usually needs to be 10-5 or lower, which is
hard to achieve, when training is performed on a limited set
of data. Thus, most of the relevant work is oriented to
improving existing decoders, by learning (via ANN)
specific decoding features.

A belief propagation (BP) decoder can be transformed
into a sparse neural network, with a small number of
learnable weights, as noticed by Nachmani et al. [4].
Following the same idea, Lugosch and Gross [5] showed
that the error-rate of min-sum decoding can be reduced if
parts of the decoder are organized as neurons of a sparse
neural network. In a more sophisticated approach, Xiao et
al. [6] used a recurrent quantified ANN to design finite
alphabet iterative decoders applied for decoding low-
density parity-check (LDPC) codes. Their work showed
that the major benefit of employing ANNs is to increase the
convergence speed of iterative decoding. In another
research direction, Liang et al. [7] entangled a BP decoder
and a convolutional ANN in a decoding loop. After a
predefined number of iterations, BP transmits codebit
decisions to the ANN, whose task is to estimate channel
noise and pass it back to the BP decoder for additional
processing. Although the proposed decoding scheme is
superior, compared to the BP decoder, its complexity is
high. He in [8] found another application of ANNs for
decoding LDPC codes, where ANN was used to predict
decoding failures and estimate bit positions for bit-flipping
that will hopefully help the min-sum decoder – the main
error correction algorithm in the proposed scheme. Finally,
Buchberger et al. in [9] proposed a decimation strategy
(learned via ANN), which enables the min-sum decoder to
perform close to ML decoding bound, for short LDPC
codes.

In this paper we examine the applicability of SLFNs and
TLFNs in decoding of linear block codes in general, and
specifically LDPC codes. Based on the provable learning
capability of ANNs we examine the complexity of the
network required to perform ML decoding on a binary
symmetric channel (BSC) and compare it with the trellis-
based ML decoder. Furthermore, we show how an ANN can

On Guaranteed Correction of Error Patterns
with Artificial Neural Networks

Srđan Brkić, Member, IEEE, Predrag Ivaniš, Senior Member, IEEE, and Bane Vasić, Fellow, IEEE

T

Paper received June 26, 2022; accepted August 15, 2022. Date of
publication December 26, 2022. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof.
Zorica Nikolić.

This paper is revised and expanded version of the paper presented
at the 29th Telecommunications Forum TELFOR 2021 [14].

This work was supported by the Science Fund of the Republic of
Serbia under project LIDA (no. 6462951) and the Serbian Ministry of
Science under project TR32028.

Srđan Brkić is with the School of Electrical Engineering, University
of Belgrade, Serbia (e-mail: srdjan.brkic@etf.rs).

Predrag Ivaniš is with the School of Electrical Engineering,
University of Belgrade, Serbia (e-mail: predrag.ivanis@etf.rs).

Bane Vasić, is with the University of Arizona, Department of
Electrical and Computer Engineering. Tucson, Arizona, USA (e-mail:
vasic@ece.arizona.edu).

52 Telfor Journal, Vol. 14, No. 2, 2022.

be used to lower error- floors of LDPC codes. Namely, we
propose a decoding scheme in which ANN is used for post-
processing, and every time an iterative LDPC decoder fails
to correct channel induced errors, ANN-based decoder is
turned on. Given the fact that the error-floors of LDPC
codes are mostly influenced by uncorrectable error patterns
with lowest weights, and that the number of such error
patterns in usually not high, ANN can be trained to learn all
of them and, consequently, reduce the error-floor by the
order of magnitude, with only a marginal increase in
complexity per transmitted codeword. Contrary to [8],
where the ANN learns the decoding features through
excessive simulations, our approach relies on pre-computed
trapping set profiles, which have been studied intensively
over the past years [10]–[13]. Thus, to apply an ANN-based
post-processor one needs to collect specific low-weight
error patterns, which is feasible for a variety of LDPC codes
and decoders, as recently shown by Raveendran et al. [10].

Is should be noted that major parts of this paper have
been presented at 2021 Telecommunication forum
(TELFOR) [14], while here we extended numerical results
and explained some of the ideas in more detail.

The rest of the paper is organized as follows. In Section
II preliminaries about LDPC codes and decoders on graphs
are given. Section III is dedicated to performance analysis
of decoding with SLFNs, while we discuss TLFN decoders
and their applicability in reducing error floors of LDPC
codes in Section IV. Concluding remarks are given in
Section V.

II. PRELIMINARIES

Consider a binary linear block code (n, k), with code rate
R = k/n, described by its parity check matrix H. Let
c=(c1,c2…,cn) be a valid codeword of the code, transmitted
through BSC with crossover probability p. Receiver collects
sequence r, where Pr{ci=ri}=1-p, 1 ≤ i ≤ n. The ML decoder
finds the closest valid codeword as
).|(maxargˆ rcPc

c
 (1)

ML decoding can be performed on trellis structure,
constructed based on H. States of a trellis at depth t, 0 ≤ t ≤
n are formed as follows

,0 0S

,,...,2,1,
1

1 ntccSS
t

i
itttt  


 ihh

where ht corresponds to the t-th column of H. A trellis path
(among total 2k paths) corresponds to a codeword of the
code. There are at most 2n-k states at every trellis depth.
Running Viterbi algorithm on the described trellis solves
Eq. (1).

Decoders of LDPC codes are commonly run on bipartite
graphs, called Tanner graphs, in order to exploit sparsity of
H. A bipartite graph is),(ECVG  , where V={v1,v2,…vn}

is a set n of variable nodes (columns of H), C = {c1,c2,…,cm}
is a set of m check nodes (rows of H). An edge Ee
connects vi and cj (e = (vi,cj)) iff hij=1. We denote a set of
neighbors of a node  CVx  as N(x), whose cardinality

|N (x)| is called the degree of the node x. Specially, average
degree of variable nodes is denoted by . An iterative

decoder D is defined as 5-tuple D = (M,Y,Φ,Ψ, ̂), where
M and Y denote internal message and channel alphabets,
respectively. Update functions implemented in variable and
check nodes are Φ and Ψ, respectively, while ̂ is a bit
decision function. A decoding iteration corresponds to
message exchange between all neighboring nodes in Tanner
graph, and thus, during the l-th iteration a variable v sends
message to its neighbour c,)(l

cv and receives from the

opposite direction)(l
vc . Messages are calculated as

),()1()(
v

ll
cv r

  n and)()()(ll
vc m , where)1(

\)(
)(

 l
vvcN

l n and

)(
\)(

)(l
ccvN

l
 m . The decoder is run for Niter iterations. By

varying alphabets and update node functions, distinct
decoders with various complexity-performance tradeoffs
can be constructed. For example, Gallager-A/B is
considered to be low a complexity solution, while offset
min-sum decoder has high error correction capability.

III. DECODING OF LINEAR BLOCK CODES WITH SLFNS

A codeword ci of linear block code can be projected to a
line and seen as a decimal number  1,0)(d

ic . Analogously, at

channel output decimal number Ir d )(in range I=[0,1] can

appear. The distance between two channel outputs)(d
ir and

)(d
jr satisfies nd

j
d

i rr 21||)()( . The decoding is equivalent

to a classification problem in which I is divided to 2k
disjoint measurable intervals P1,P2,…,P2k. Note that Pi may
not be continuous. The decoder can be represented as a
function f

. if ,)()(
i

d
i Pxcxf 

Consider a feed-forward ANN with a single hidden layer
constructed to mimic f(x). The neural network is a finite
linear combination of the form





M

j
jjj xwxG

1

),()(

where αj, wj and θj are fixed real numbers, and σ(ꞏ) is any
continuous function satisfying









. if ,0

 if ,1
)(

t

t
t

Let FERML be a frame error rate (FER) of the ML
decoder. The following theorem shows that a previously
defined ANN can mimic a ML decoder with a negligible
error.

Theorem 1. There exists artificial neural network G(x),
which produces frame error rate FERANN , and under the
assumption of uniformly transmitted codewords, satisfies
|FERANN-FERML|≤p(1-p)n-1/2k.

Proof: By Cybenko’s theorem [1] we know that there
exist network G(x) and interval D ⊂ I for which
|G(x) - f(x)|<ε for all Dx , for any arbitrary ε.
Furthermore, Lesbegue measure of D is m(D)≥1-ε. This
means that neural network can classify almost all inputs in
almost all x domains. Note that decoding on BSC is less
rigorous – it only requires classification on a set with
discrete inputs values. For all ε</2(k-2), G(x) will
successfully classify every received sequence from the
channel Dx , since the network will give the result closest

Brkić et al.: On Guaranteed Correction of Error Patterns with Artificial Neural Networks 53

to value (codeword) produced by the ML decoder. Given
the fact that Cybenko’s theorem does not guarantee the
locations of interval D, it is possible that outside D there
exist discrete points, which will be incorrectly classified. It
follows that, under the same condition for ε< 1/2(k-2), at most
one such point exists. It is reasonable to assume that if a
valid codeword remains outside of D, its presence can be
detected by the simple syndrome checker, meaning that the
ANN will not be used. The highest discrepancy between
FERANN and FERML will be observed when outside of D
remains a number closest to a valid codeword c0, denoted
by x’. Probability that channel creates such sequence is
P(c0)P(x’|c0) = p(1-p)(n-1)/2k. Note that x’ can be observed
even if codewords other than c0 are transmitted; however,
in those cases ML decoder will also fail to correctly decode
the codeword.

The following theorem reveals the number of neurons
that a SLFN should have, in order to learn the ML decoding.

Theorem 2. There exists SLFN, with 2n-2k neurons, that can
lean the ML decoding.

Proof: Proof follows directly from [2], where it was
shown that every one-dimensional discrete function with M
samples can be accurately represented by 2-layer neural
network with exactly 2M+1 weights and ReLu activation
function in each node of the hidden layer. The number of
nodes in the network is equal to M. In order to learn the ML
decoding the SLFN needs to learn all M=2n-2k error
patterns.

The previous theorem shows that in case of the SLFN,
the number of required neurons grows linearly with the size
of training sample set. If we aim to learn the ML decoder,
the complexity of the network is O(2n), where n denotes the
length of code. We next compare the complexity of neural
network, with a trellis-based decoder. Given the fact that
complexity of either ANN or trellis-based decoder is
proportional to the number of branches on the graph, we
compare two decoding approaches in terms of total graph
branches. The ML decoder requires at most 2(n-k)+1n
branches, thus, based on Theorem 2, the total number of
error patterns correctable by the SLFN, E, must satisfy
E<2n-k+logn, if we want to achieve complexity reduction,
compared to trellis-based decoder. Formally, the following
corollary defines code parameters for which we can achieve
complexity reduction if we want to learn the complete space
of 2n samples.

Corollary 1. There exists a single-layer neural network
capable to learn the ML decoding with fewer branches than
trellis-based ML decoder if k<log2 n.

The above constraint gives us only provable complexity
reduction achieved by employment of SLFNs. However,
this does not necessarily mean that if k≥log2n, the
complexity reduction cannot be achieved. If Fig. 1 we show
boundary code rates, as a function of code lengths, for
which we can provably reduce complexity of the ML
decoder by using SLFNs. We can observe that clear
complexity reduction can be achieved only for shorter
codes, while boundary code rates converge to zero.

Fig. 1.Illustration of Corollary 1

IV. DECODING OF LINEAR BLOCK CODES WITH TLFNS

In this section we examine the possibility of employing
TLFNs for the problem of decoding linear block codes. The
main advantage of TLFNs is that they can be constructed
with a smaller total number of nodes, compared to SLFNs
with the same learning capabilities. Namely, Huang [3] has
shown that to learn E input samples, it is possible to
construct a network with one output node and L1 and L2
nodes in the first and the second hidden layers, respectively,

3231 EEL 

32 EL 

Thus, the total number of branches in the TLFN is equal to

.
3

4
)

3

2
3(

3

4
2211 EEELLLL 

Compared to the SLFN, the TLFN has approximately 33%
fewer branches. However, for the majority of significant
linear block codes, a trellis-based structure appears to be
less complex. We next verify the above complexity by
building the TLFN that tries to learn the ML decoding of
Euclidian Geometry (EG) LDPC code of length n=15. We
used the ReLu activation function in the first hidden layer
and the sigmoidal function in the second hidden layer, while
a mini-batch-based learning process is equipped with the
Adam optimizer. The training set is composed of all
possible input sequences, i.e., E=215. It can be shown that
the EG code can achieve FERML=4×10-4, for p=0.01. We
change the number of nodes in the ANN to obtain
FERANN= FERML, which is shown in Fig. 2. We can see that
600 nodes (100 in the first hidden layer plus 500 in the
second hidden layer) is sufficient to replicate the reliability
of the ML decoder, which is slightly less than predicted
with the analytical formula, which states that 628
(523+105) nodes are required. Further reduction of the
ANN complexity does not enable learning the ML for all E
inputs (Fig. 2).

From the above analysis it follows that ANNs can be
useful if the number of training samples is small, which
means that we can train the ANN to correct only a portion
of error patterns, while the majority of error patterns is
corrected by the other, less complex decoder. Iterative
decoders D of LDPC codes correct the majority of errors,

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

54 Telfor Journal, Vol. 14, No. 2, 2022.

Fig. 2. FER achieved with different TLFNs.

but fail to correct specific error patterns, that correspond to
trapping sets of nodes on the Tanner graphs. Trapping sets
determine the code performance when channel error
probability is low, i.e., we say that the decoder operates in
the error-floor region. A trapping set is defined as a
subgraph, which contains all the errors in the received
sequence. However, all the variable nodes in the trapping
set may not be erroneous. Trapping sets depend on the code
structure and on the decoding rules. The biggest influence
on code performance is made by the uncorrectable error
patterns with the lowest weights. If we denote by t the
weight of the lowest uncorrectable pattern, FER in the error-
floor region can be approximated by [15]

,loglog ptcteFER 

where ct represents the number of weight-t error patterns
that cannot be corrected by D. Numerous methods are
proposed to determine the numbers t and ct, and usually

.









t

n
ct

 It follows that ct error patterns can be corrected

by the ANN, with a relatively small number of nodes. Thus,
we propose a decoding approach in which the sequence
received from the channel is decoded by D, and in case of
decoding failure the output of D is sent to the ANN,
previously trained on a set of uncorrectable error patterns
Bt. The cardinality of the training set depends on the code
structure and decoder type. In some cases, iterative
decoding converges to a fixed trapping set, i.e., after some
iteration all messages exchanged by nodes in the Tanner
graph do not change. For example, when the Margulis code
is coupled with Gallager-B decoder, all weight-4
uncorrectable error patterns will cause the decoder to be
stuck in a fixed trapping set. For such cases, to eliminate the
lowest-weight error patterns, the cardinality of the training
set is |Bt|=ct. For other cases it is possible that the decoding
process oscillates between erroneous states. This means that
to correct an error pattern, ANN needs to learn all the
possible outcomes of D that correspond to that error pattern.
Thus, the cardinality of the training set is bigger than ct, and
can be determined after careful enumeration. All in all, after
ANN-based decoding FER is reduced to
exp(logct+1+(t+1)log p).

It should be emphasized that the average number of
channel errors per codeword is pn, which is usually much
larger than t. This means that weight-t error patterns are
rare, and do not directly influence the code performance.
However, during the decoding error patterns with larger
weights are reduced to weight-t error patterns. This is the
reason why we do not send the sequence received from the
channel to the ANN decoder, rather the output produced by
D. The proposed serial concatenation of D and ANN
decoder, dramatically increase the worst-case complexity of
decoding. However, we argue that the average complexity,
determined by the average number of graph branches, is
only marginally increased. The average number of used
graph branches can be calculated as follows

,
3

2
3||||

3

4
, 
















 ttTiteravgb BBFERnNN 

where the first term represents the contribution of D, and
the second the average complexity of the ANN decoder,
while FERT denotes FER without employment of the ANN.
We can also define the relative complexity increase ψ as

%.100)1)((,  nNN iteravgb 

We next examine complexity increase for different codes
and D decoders. This is illustrated in Table I. At this point
we do not provide a detailed description of our example
codes but refer to referent works for more details. The
average complexity of the proposed decoding approach is
negligibly higher, if we aim to correct low-weight error
patterns. On the other hand, adding ANN reduces the error
rate for an order of magnitude, in the error-floor region. For
example, for code C1 and p=0.01, eliminating ct=4 error
patterns lowers error rate from FER≈1.9×10-4 to FER
≈1.4×10-5. To further illustrate the benefit of ANN-
enhanced decoders, we conduct Monte Carlo simulation
and evaluate the performance of the C5-Margulis code. The
results of the simulation are presented in Fig. 3. We observe
that applying ANN to correct residual weight-4 error
patterns reduces the error floor of the Margulis code by the
order of magnitude. A similar conclusion also holds for
other codes, for example the C2-Tanner code, depicted in
Fig. 4. We have shown that employment of ANN as a post-
processing element reduces the gap between the Gallager-
B decoder and the much more complex Min-Sum decoder.

V. CONCLUSION

In this paper we have examined the possibility of using
TLFNs and SLFNs in decoding linear block codes. We have
shown that current knowledge of TLFNs and SLFNs cannot
guarantee the performance of ML decoding, with
significantly lower complexity than trellis-based decoding.
On the other hand, TLFNs can be an efficient post-
processing block in decoding LDPC codes and lower error-
floors with small complexity penalty. Future work will
involve more elaborate examination of employing ANNs in
decoding practically significant LDPC codes and
possibility of involving deep neural networks into decoding
process.

200 250 300 350 400 450 500 550 600 650 700
10-4

10-3

10-2

10-1

100

Brkić et al.: On Guaranteed Correction of Error Patterns with Artificial Neural Networks 55

TABLE 1: Complexity increase for different LDPC codes
Code Decoder n R t ct |Bt| ct+1 ψ for FER=10-5

C1-QC [10] Offset min-sum 18432 0.903 4 19232 19232 15712 0.0015%
C2-Tanner [10] Gallager-A/B 155 0.4 3 155 310 456 0.007%

C3-MacKay [12] Gallager-A/B 1008 0.5 3 179 193 1215 0.00008%
C4-MacKay [12] Gallager-A/B 816 0.5 3 173 212 1372 0.00008%
C5-Margulis [12] Gallager-A/B 2640 0.5 4 1320 1320 11088 0.0001%

C6-QC [12] Gallager-A/B 900 0.5 3 50 100 675 0.000012%
C7-QC [13] Gallager-A 200 0.5 3 1434 2868 N/A 0.0015%

Fig. 3. Performance of ANN-based decoder - C5 code.

Fig. 4. Performance of ANN-based decoder – C2 code.

ACKNOWLEDGMENT

This work was supported by the Science Fund of the
Republic of Serbia under project LIDA (no. 6462951) and
the Serbian Ministry of Science under project TR32028.
Bane Vasic acknowledges support of the NSF under grants
CIF- 1855879, CCF-2100013, CCSS-2027844 and CCSS-
2052751, as well as the support of the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration and funded through JPL’s Strategic
University Research Partnerships (SURP) Program. Bane
Vasic has disclosed an outside interest in Codelucida to the
University of Arizona. Conflicts of interest resulting from
this interest are being managed by The University of
Arizona in accordance with its policies.

REFERENCES

[1] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Math. Control Signals Systems, vol. 2, pp. 303–314, 1989.

[2] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning requires rethinking generalization,”
https://arxiv.org/abs/1611.03530, Feb. 2017

[3] G. Huang, “Learning capability and storage capacity of two-
hiddenlayer feedforward networks,” IEEE Trans. Neural. Net., vol.
14, no. 2, pp. 274–281, Mar 2003

[4] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode
linear codes using deep learning,” in in Proc. 54th Annu. Allerton
Conf. Commun., Control, Comput. (Allerton), Sep. 2016

[5] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017

[6] X. Xiao, B. Vasic, R. Tandon, and S. Lin, “Designing finite alphabet
iterative decoders of LDPC codes via recurrent quantized neural
networks,” IEEE Trans. Commun., vol. 68, no. 7, pp. 3963–3974,
July 2020.

[7] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for
channel decoding,” IEEE Journal of Select. Topics in Sig. Process.,
vol. 12, no. 1, pp. 144–159, Jan. 2018.

[8] J. He, “A deep learning-aided post-processing scheme to lower the
error floor of LDPC codes,” in Proc. 2020 IEEE 20th Inter. Conf. on
Commun. Technology (ICCT), Oct. 2020.

[9] A. Buchberger, C. Hager, H. Pfistery, L. Schmalenz, and A. Amat,
“Learned decimation for neural belief propagation decoders,” in
Proc. ICASSP 2021 - 2021 IEEE Inter. Conf. on Acoustics, Speech
and Sig. Process. (ICASSP), June 2021.

[10] N. Raveendran, D. Declercq, and B. Vasic, “A sub-graph
expansioncontraction method for error floor computation,” IEEE
Trans. Commun., vol. 68, no. 7, pp. 3984–3995, July 2020.

[11] M. Karimi and A. Banihashemi, “On characterization of elementary
trapping sets of variable-regular LDPC codes,” IEEE Trans. Inform.
Theory, vol. 60, no. 9, pp. 5188–5203, Sep. 2014.

[12] S. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” in in Proc. 2006
IEEE Inter. Conf. Commun., June, 2006.

[13] H. Xiao and A. Banihashemi, “A sub-graph expansion-contraction
method for error floor computation,” IEEE Trans. Commun., vol. 68,
no. 7, pp. 3984–3995, July 2020.

[14] S. Brkic, P. Ivanis and B. Vasic, “Applicability of single- and two-
hidden-layer neural networks in decoding linear block codes,” In
Proc. 2021 29th Telecommunications Forum (TELFOR), 23-24 Nov.
2021.

[15] S. C. M. Ivkovic and B. Vasic, “Eliminating trapping sets in low-
density parity check codes by using tanner graph covers,” IEEE
Trans. Inform. Theory, vol. 54, no. 8, pp. 3763–3768, Aug. 2008.

10-2 10-1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2
10-7

10-6

10-5

10-4

10-3

10-2

10-1

