
 Telfor Journal, Vol. 3, No. 1, 2011. 60

Abstract — In this paper we propose the architecture of a

new software system for self-directed interactive learning
and assessment in the domain of algorithms and data
structures. The system extends Visual Simulator of
Algorithms (VSA), a tool previously developed at the School
of Electrical Engineering, University of Belgrade. The system
provides control of trainee's independence level, flexible
input data set assignment and configurable automatic
assessment of test-taker's actions. The paper describes the
architecture of the proposed system and gives relevant
implementation details.

Key words — automatic assessment, interactive training,
knowledge testing.

I. INTRODUCTION
OFTWARE systems for training and assessment
represent valuable means in education. On one hand,

they provide repetition of lessons (i.e. training procedures)
to the extent necessary to the trainee. On the other hand,
after completing the training cycle, they provide
knowledge verification, with optional automatic
assessment. The use of such systems in these activities
reduces the average time the instructor has to devote to
persons intended to be trained or tested. Furthermore, the
instructor may not even have to be present at the time the
activity takes place, allowing him to spare more time for
the activities that require greater attention. Also, advanced
systems provide tools for test results analysis, which can
help the instructor with important guidelines about how to
adjust the contents of lessons and tests.

The most common systems for training and knowledge
testing (virtual learning environments) [1] are based on
questions with answers that the subject has to type in or
predefined answers. However, this approach is suited only
for questions in domains where simple knowledge
reproduction is satisfactory, since it ignores the procedure
of getting the answer. Moreover, the approach using
predefined answers allows the subject to guess the right
answer.

The previously discussed approach to giving the
answers is not appropriate for the tasks that are common
in the domain of algorithms and data structures. In this

Miloš M. Milivojević is a student enrolled in a Master’s programme at

the Department of Computer Science and Informatics, School of
Electrical Engineering, University of Belgrade (e-mail:
milivojevic.milos@gmail.com).

Đorđe M. Đurđević and Milo V. Tomašević, School of Electrical
Engineering, University of Belgrade, Bulevar kralja Aleksandra 73,
11120 Beograd, Srbija; (tel: 381-11-3218-385; e-mail: zorz@etf.bg.ac.rs,
mvt@etf.bg.ac.rs).

domain, knowledge about a specific algorithm, as well as
its correct application, actually represent the answer.
Consequently, a subject that has little knowledge about a
specific algorithm and a subject that makes an error in the
last algorithm step would be assessed in the same way.

In this paper we propose the architecture of a system for
self-training and testing in the domains where the
procedure of solving a problem is of great importance.
Although the system is primarily developed as a software
tool for improving the quality of the course in Algorithms
and Data structures at the School of Electrical
Engineering, University of Belgrade, the proposed
architecture allows a wider range of applications.

The rest of the paper is organized as follows. In Section
2 we present the problems that an automated system for
training and testing has to solve. We also give a brief
overview of the existing systems and point out some of
their undesirable traits which the proposed architecture
intends to eliminate. In Section 3 we discuss the desired
functionalities of the proposed system and present the
most important architecture details. In Section 4 we give
some implementation details and system prototype
structure, with a brief overview of the employed
technologies. In Section 5, we draw the conclusions and
point out some directions for further research.

II. PROBLEMS AND EXISTING SOLUTIONS
In this Section we give an overview of the problems in

the domain of automated training and knowledge testing
and give a brief overview of existing solutions.

The use of software systems for training and knowledge
testing in education has several desirable implications:

• training is conducted without or with minimal
involvement of the instructor, who can redistribute his
time and effort to activities that require more attention,

• training can be adjusted to the knowledge level of the
trainee, while the trainee can repeat the training procedure
as many times as required in order to master the lesson,

• testing results are available immediately after the test
is finished, independently of the number of subjects,

• training can be carried out at distance, which
effectively reduces the need for physical presence (for
both subjects and instructors) and increases the time of
learning material availability.

The existing systems for knowledge testing, with the
most important representatives given in [2], traditionally
consist of a set of questions, prepared in advance, to which
the subject being tested gives the answers by selecting one
(or sometimes more) of the offered answers or by typing

Architecture of a System for Interactive Training
and Testing in Algorithms and Data Structures

Miloš Milivojević, Đorđe Đurđević, and Milo Tomašević

S

Milivojević et al.: Architecture of a System for Interactive Training and Testing in Algorithms 61

in the correct answer in form of a short text. Sometimes
parameterization is present in the questions, which allows
the verification of the level of understanding, instead of
simple knowledge reproduction. An example of
parameterization is given in [3]. However, such a
knowledge verification method induces several important
problems. Firstly, it is inadequate to assess the tasks that
require the knowledge of an algorithm because, in case of
an incorrect answer, it cannot take into account the level
of algorithm conversance demonstrated by the subject.
Also, in case of a correct answer, it is impossible to tell
whether the subject actually knows the answer, guessed
the answer or found the answer by making several errors
(that somehow cancelled each other). Secondly, limited
parameterization implies that the instructor has to create a
larger number of similar questions on the same topic.
Finally, when creating a question, the instructor also has to
give the correct answer. This greatly reduces the
possibility of training, as the subject can only rely on the
materials (questions) provided by the instructor. It also
significantly reduces the possibility of self-testing, when
the subject defines and solves the problem on his own.
The motivation for designing the proposed architecture of
a system for training originates from the fact that the
existing publicly known systems do not provide an
adequate solution for the abovementioned problems.

It is very desirable for an educational system to allow
autonomous interactive passive, controlled, and
self-directed training. Passive training implies that the
subject observes an automated procedure of algorithm
execution, in steps, with the possibility to control the
execution speed and to jump (possibly back) to a specific
execution step. Controlled training implies that the subject
tries to solve the problem by manually indicating
execution steps, while being given hints that help
deducing the next step. Self-directed training implies that
no help is given to the subject. Also, except for the passive
training, a warning message is issued as soon as an error
in the execution steps given by the subject is detected.
Essentially, testing is the same as self-directed training,
but with no warning messages.

In the remainder of this section, we give a brief
overview of previously mentioned systems that support
QTI standard [4]. As indicated in [5], QTI defines a data
model that is used for representation of questions,
answers, assessments, results and aggregation of
assessment units in order to create tests. The specification
is designed to support simple questions and test materials
as well as complex ones. Data sharing between different
assessment systems is possible, due to the XMS schema
implementation.

Moodle (Modular Object-Oriented Dynamic Learning
Environment) [6] is a free, PHP based, open-source web
application for e-learning. Since April 2011, Moodle's
user data base contains more than 54000 verified sites,
that serve more than 42 million users in more than 4.5
million courses. It is mainly used by educational
institutions. Dokeos [7] is another open-source web
e-learning application, also developed in PHP. Currently,

it serves more than 3 million users worldwide. It is used in
educational institutions, multinational companies, health
institutions and state administrations. Sakai Project [8] is a
free, community source application written in Java,
intended for teaching, research and collaboration. It
originates from the cooperation of several US universities.
Currently, it is used in more than 160 educational
institutions by about 200000 users. OLAT [9] is a free,
open-source web application written in Java. Currently
there are 150 verified installations, with more than 170
000 users in 8 000 courses.

To the best of our knowledge, none of the mentioned
systems provides all the functionalities that the desired
system should have, such as controlled or self-directed
training and testing in the domains where the procedure
for solving a problem is of great importance. The authors
are not aware that the architecture of such a system is
publicly available. Consequently, it represented the
motivation for developing a system for autonomous
interactive passive, controlled or self-directed training and
knowledge testing in the domains where the knowledge of
procedures is valuated with a configurable method. It
should be noted that the sequence of activities that
represent the correct answer does not have to be unique.

III. SYSTEM DESCRIPTION AND ARCHITECTURE
In this Section we present the architecture and

capabilities of the system for assessment and training in
the field of algorithms and data structures, which is the
topic of this paper.

In essence, the proposed system provides a means of
conducting a part of practical training as an interactive
computer session where the simulator, which is used by
students, acts as a personal trainer. The obligation of
teachers is to provide the students with a set of problems
over which they have to learn and test their knowledge,
and also to provide them with the test used for assessing
the acquired knowledge. Student's work is recorded and
can give teachers the insight into segments of working
material that the students tend to adopt at a slower pace,
which is particularly important in the learning mode. In
the knowledge testing mode, test access is provided only
to those students who belong to a group of users for whom
this test is intended. The scoring of students' work is done
by comparing the given responses to the expected ones,
where the system comes up with the expected response by
itself by executing the given algorithm in accordance with
the selected input parameters. Based on the recorded
score, the grade is given by a software grading component,
selected by the teacher.

The system consists of a server and a client side. The
server side includes one application (the server), while the
client side consists of three independent applications:
student, instructor, and administrator application. The
main reasons for having three independent client
applications are to reduce the complexity of
implementation, and to increase the overall system
security. Given the technology selected for the
development, reverse engineering of the client application

 Telfor Journal, Vol. 3, No. 1, 2011. 62

could reveal certain implementation details that would
allow cheating. With three separate applications, out of
which only the student application would be made
publicly available, the chances for undermining the system
security by potentially malicious users are substantially
reduced. Component diagram showing the main parts of
the system is given in Fig. 1.

Fig. 1. A component diagram showing the main

components of the system - three clients, a server and a
faculty database. Client components provide server
configuration, creation and grading of tests, directed

learning and assessment. The server provides
authentication and processing of service requests, which

rely on the communication with the database.

The server application is used for authentication and

authorization of the clients and for processing the client
requests. In case of a prolonged inactivity of the client, it
may also terminate the client session with prior sending of
an adequate warning.

For an increased overall security and flexibility, system
architecture has been organized into three layers:
presentation layer, service layer, and data access layer.
Presentation layer is responsible for displaying the
graphical user interface and is implemented in the client
components (see Fig. 1). Service layer defines the
functionality of the system. By introducing the service
layer we are bridging the gap between the presentation
layer and the data access layer, which leads to better
component decoupling and, subsequently, to greater
system flexibility and security. Data access layer is
responsible for the persistence of information through
communication with the database.

The database (see Fig. 1), with which the information
flow is conducted exclusively through the data access
layer within the server application (see Section IV),
contains a repository of questions and algorithm input
parameters, a list of all currently active tests, information
pertaining to student groups, data on users, statistical data,

and temporary backup data of the tests currently in
progress.

The administrator application is responsible for
configuring the server application, as well as the
organization of users (e.g. adding or deleting a teacher)
and user groups (e.g. adding users to a group intended for
potential "guest" users). There are two types of guest users
- anonymous and authorized guests. Anonymous guests
are not logged onto the system, and the only functionality
available to them is passive training and an overview of
public tests. Authorized guests are logged onto the system
and have access to most of the student functionalities, with
the exception that those functionalities apply only to
public tests.

The instructor application is responsible for the creation
and maintenance of student groups (primarily related to
the courses), question creation, putting the tests together,
publication of the tests, and also for reviewing the usage
statistics and grading of the test scores. A question is
defined by selecting an algorithm from the desired area
and setting the algorithm's input parameters (either by
selecting them from the repository or by creating new
values). The input parameters include the initial state of
the data structure over which the algorithm is executed,
and also the parameters that define the behavior of the
algorithm itself. For instance, for sorting algorithms, a
relevant parameter would be the sorting order (ascending
or descending). It should be noted that the system also
supports the traditional way of defining the questions
(e.g., in the form of multiple choice textual questions), but
that is not the subject of this paper. A test consists of any
number of questions. When adding questions to the test,
the teacher is allowed to choose questions from the
repository of existing questions, or to define a new one.
For each question, the system keeps the account of the
tests in which it has been used, giving the teacher an
insight into the usage frequency of any particular question.
When publishing the test, the teacher designates the
student group to which the test pertains, the duration of
the test, the test activation date or the duration of its
availability, and the type of the test (for student evaluation
purposes or for independent practice). The teacher defines
the grading method of student test scores by selecting one
of the available configurable grading modules. The test is
considered published after the first user gains access to it
(the first fetch from the repository). A published test is
automatically "locked" and it is not possible to make any
subsequent changes to it. The teacher can invalidate the
test, which prevents the download of the test by the
students. Also, it is possible to clone a test, which allows
the teacher to make similar tests, with minor changes to
their contents and purposes (to whom they are intended
and in what manner).

The student application is designed for training and
assessment, and it provides interactive work (the display
and execution of tests) in the graphical user interface
which employs the application developed in [12] and [13]
as its basis. After the authentication, the student
application retrieves a list of available tests from the

Milivojević et al.: Architecture of a System for Interactive Training and Testing in Algorithms 63

server, out of which the student may choose one to solve.
The student application automatically downloads all data
necessary for running the test, including the
implementation of algorithms. It should be noted that the
application can be run independently, without connecting
to the server application. The application is designed to
run in two modes: training and assessment. As noted in
Section II, training can be passive, controlled or
self-directed. Testing can be either self-testing or graded
testing. Self-testing is different from graded testing in that
its duration is not time restricted. In this mode, the student
progressively solves the test, question by question, without
assistance, and then, at the end of the test, he is shown the
test results in the form of a percentage match between his
actions and the required ones, and the number of errors
made, grouped by their severity.

The component in charge of determining the percentage
match between the user's actions and the required ones is
the algorithm implementation, specified during question
creation, and the component in charge of assessing the
error severity is the implementation of data structures over
which the algorithm is executed. The test scores are stored
into the database, where they are available to the teachers
responsible for their grading.

IV. IMPLEMENTATION DETAILS
In this Section, we present the details of implementation

of the prototype application that was used to validate the
system architecture proposed in this paper, and outlines
the technology used.

Connection of the client applications to the server is
based on a built-in library of the Java programming
language, intended for the remote method invocations
(RMI). RMI has a convenient feature that allows the
communication between two classes located on different
computers (and whose methods are, therefore, executed in
different Java Virtual Machines) to be performed
transparently, in the same manner as if the classes were on
a single computer.

For database access and data manipulation we used
Hibernate (version 3.6.4), the popular open-source
software framework for object-relational mapping. It is an
improvement over the traditional approach primarily in
that it allows easy and straightforward mapping of the
database model (relational model) into the object model
(classes that are used by the system), with the possibility
of writing queries programmatically, using framework's
own classes for expressing different query criteria.

Integration issues, security and transaction management
are implemented using Spring Framework (version 3.0.5),
an open-source application framework for the Java
platform. The Spring Framework comprises several
modules that provide a range of services, out of which the
following are of interest in this paper: inversion of control,
aspect-oriented programming, database access, transaction
management, remote method calls, authentication and
authorization and testing.

Java SE2 1.6 and NetBeans (version 7.0), an open-
source integrated development environment for the Java

platform, were used for the development of the prototype
application.

Fig. 2 shows a simplified UML class diagram
comprising key classes of the server application. Server
interface provides a communication API that must be
respected in the implementation of the server and client
classes. ServerImpl class implements the Server interface.
Its role is to authenticate and authorize the client
applications, and provide them access to the functionality
through the service classes.

Fig. 2. Simplified diagram showing the core classes of

the server application. VSAService class and interface
hierarchy form the service layer of the application, while
the remaining classes either represent the abstractions of
the domain or serve to integrate the service API with the

rest of the system.

System functionalities are implemented in the class

hierarchy consisting either of the direct implementations
of the VSAService interface or of the classes that
implement its inheritors (classes
AdministratorServiceImpl, InstructorServiceImpl and
StudentServiceImpl), and which the server application
instantiates after successful authentication according to the
type of the client application. Each of these classes
implements the appropriate interface -
AdministratorService, InstructorService and
StudentService - which provides an API for remote
communication with client applications. The
aforementioned classes and interfaces form the server
application's service layer (see Fig. 1). Each of the client
applications has access to a precisely defined set of
functionality through its VSAService implementation.
StudentService interface provides the functionalities
required by students, such as fetching the desired test from
the database or entering the respondent's answers into the
database. On the other hand, InstructorService interface
provides functionality required by teachers - creating
questions and placing them in the question repository,
creating and publishing tests, grading of test scores, etc.

 Telfor Journal, Vol. 3, No. 1, 2011. 64

The role of KeepaliveThread, which is an active class,
is to take into account the duration of client applications'
inactivity periods and, if necessary, to terminate client
sessions.

Each of the classes that implement some of the Service
interfaces (AdministratorService, InstructorService,
StudentService) uses the realizations of the CrudDAO
interface to persist their data and to communicate with the
database. CrudDAO interface provides a minimal set of
methods that all of its implementation must follow and
which are related to the basic database operations - create,
read, enter and delete (often abbreviated CRUD).
Hierarchy of classes that implement CrudDAO interface
constitutes the data access layer (see Fig. 1). For mapping
of the classes of the object domain into the tables of the
relational domain we used the previously mentioned
object-relational mapping framework, Hibernate.

Fig. 3 shows a simplified UML class diagram of the
core classes of the client applications. Client interface
provides a basic API for communication with the server,
while the class that implements it, ClientImpl, implements
the behavior common to all the client applications -
authentication and authorization, configuration of
communication parameters (e.g. IP address of the server),
etc. Student, instructor and administrator client
applications are implemented as classes
StudentClientImpl, InstructorClientImpl and
AdministratorClientImpl, respectively. As can be seen in
the diagram, each of the client applications uses the
appropriate implementation of VSAService interfaces.

Fig. 3. Simplified diagram of the core classes of the
client applications. Client interface provides the
communication API, ClientImpl implements the
functionality shared by all the clients, and client

applications use the proper implementation VSAService
interfaces to achieve functionality.

The implementation of the system presented in this

section relies on the tool called Visual Simulator of
Algorithms (VSA). This tool is the result of a series of
theses and final papers of undergraduate students at the
School of Electrical Engineering in Belgrade [10] - [14].
VSA's presentation layer is used as the basis for the new

system's presentation layer. Because of this, in this
section, we will briefly describe the core of the VSA tool.

VSA core consists of three key basic classes and their
specializations: the Algorithm class, which defines the
algorithm itself, i.e. the execution procedure; the
ObservableVariable class, which is the base class of all
the data structure classes used by algorithms, and Action
class, which is an abstraction of actions taken by the
algorithm upon its data structures. The Action class
contains all relevant information required for defining the
participants in the action, on one hand, and the state of the
used data structures after the execution of the action, on
the other hand. For example, in the case of swapping of
two array elements, an instance of the Action class that
represents this step in the algorithm will contain an
identifier of the array whose elements exchange values, a
copy of the array before the swap, and the array positions
(indices) of the elements that swap their values.

Executing the algorithm over the given data structures
will result in a list of appropriate actions that are
subsequently interpreted by the presentation layer to form
an adequate visual representation. Data structure
abstraction class, ObservableVariable, in addition to
representing structures themselves, also provides utility
methods that are abstractions of the basic operations on
the corresponding structure and are also responsible for
generating the aforementioned list of actions.

The crucial part of the presentation layer is represented
by hierarchies of two basic classes - the view class
(AbstractView) and the viewer class (AbstractViewer). The
view class defines graphical representation of components
used to visualize the algorithm, while the viewer class
determines what, when and where to draw. The view class
is vital for realizing display flexibility and represents an
abstraction of the way of viewing the process of executing
an algorithm. This class defines a standard interface for
processing actions that are generated by an algorithm, as
well as methods for displaying abstract data structures
over which an algorithm associated with the view is
executing. The view class is in charge of the list of actions
formed as a result of executing an algorithm, which is
done by iterating through the list of actions and displaying
the state of the used data structures after each step of the
algorithm, possibly with animation of the action that led to
this state.

The viewer class (AbstractViewer) is an active class that
collaborates with the view class so that it provides the
necessary context for drawing. Its responsibility is to call
the appropriate methods of the view class in a timely
manner. Fig. 4 shows examples of using the VSA tool for
the visualization of some algorithms on graphs and binary
trees.

The described hierarchy of the VSA tool's classes plays
a key role in the system proposed in this paper. The
validation of the respondents' answers is based on the
extensions of the Algorithm and the ObservableVariable
classes. The Algorithm class is responsible for comparing
the series of the respondent's actions with a series of valid
(expected) actions. The implementation of a specific

Milivojević et al.: Architecture of a System for Interactive Training and Testing in Algorithms 65

algorithm may decide to stop the comparison of actions
after the first mismatch or to attempt the recovery after the
mismatch and continue trying to match further actions.
This provides a more accurate assessment of respondents'
knowledge. On the other hand, the ObsevableVariable is
responsible for assessing the severity of mistakes, which is
in part based on the validation of the resulting data
structures. For example, if a series of student's actions led
to a poorly formed structure, it indicates a serious error.

a)

b)
Fig. 4. Examples of using the VSA tool to display the

execution of some algorithms, a) finding the minimum
spanning tree in a given graph, b) insertion of keys into an

AVL tree.

V. CONCLUSION
In this paper, we have presented the architecture of a

software system for training and testing of knowledge in
domains where the problem solving procedure is highly
important, which is not the case with traditional testing
systems. The proposed system provides self-directed,
controlled, and passive training, allowing the users to
specify the parameters and data for the algorithm
execution. Consequently, the users are also able to check
their knowledge and understanding in specific situations to
which the instructor did not pay (enough) attention. In the
test mode, the system can assess the sequence of actions
specified by the user that are only partially concordant
with the given algorithm, and estimate the success rate of
these actions. Furthermore, this gives a better insight into
knowledge and understanding demonstrated by the user.

Aside from the planned introduction of the completed
system in the course Algorithms and Data Structures at the
School of Electrical Engineering in Belgrade, further
improvement of the system could comprise the
development of the following components: performance
evaluation of an algorithm (including the possibility to
compare the performances of related algorithms),
statistical analysis of the test results, individual progress
monitoring for each student. In order to complete the
system, all relevant algorithms will have to be
implemented, and the test repository will have to be
created, as well.

The abovementioned feature of progress monitoring
could be implemented through a connection with existing
virtual learning environments (such as Moodle), that
already provides appropriate support. Such a connection,
with a stable, flexible and widely available virtual
environment, would provide several benefits, the most
important being increased system rating and applicability,
and centralized progress monitoring. The development of
the connection module includes the implementation of the
IMS QTI standard within the system, as well as the
publication of key functional features of the system as web
services.

REFERENCES
[1] P. Dillenbourg, D. K. Schneider, P. Synteta, “Virtual Learning

Environments,” in Proc. 3rd Hellenic Conference on Information &
Communication Technologies in Education, pp. 3-18, 2002.

[2] http://en.wikipedia.org/wiki/Virtual_learning_environ
ment#List_of_some_virtual_learning_environments

[3] Moodle Question Type – Java Molecule Editor,
http://moodle.org/mod/data/view.php?d=13&rid=296

[4] IMS QTI, IMS Global Learning Consortium Question & Test
Interoperability Specification (QTI), 2005,
http://www.imsglobal.org/question/.

[5] W. M. Davies, H. C. Davis, “Designing Assessment Tools in a
Service Oriented Architecture, ” In Proc. 1st International ELeGI
Conference on Advanced Technology for Enhanced Learning
Napoli, Italy, 2005.

[6] Moodle.org: open-source community-based tools for learning,
http://moodle.org/

[7] dokeos - Open Source E-Learning, http://www.dokeos.com/.
[8] Sakai Project - an Open Source suite of learning, portfolio, library

and project tools, http://sakaiproject.org/
[9] OLAT - Your Open Source LMS, http://www.olat.org/
[10] I. Mićanović, “Design and implementation of VSA core,” bachelor

thesis (in Serbian), School of Electrical Engineering, University of
Belgrade, 2009.

[11] M. Bjegović, “Design of GUI and presentation layer for VSA,”
bachelor thesis (in Serbian), School of Electrical Engineering,
University of Belgrade, 2009.

[12] D. Đurišić, “Design and implementation of advanced VSA core,”
bachelor thesis (in Serbian), School of Electrical Engineering,
University of Belgrade, 2009.

[13] M. Milivojević, “Design and implementation of advanced graphical
interface for VSA,” bachelor thesis (in Serbian), School of
Electrical Engineering, University of Belgrade, 2009.

[14] D. Mirosavljević, “Implementation of tree based algorithms within
VSA,” bachelor thesis (in Serbian), School of Electrical
Engineering, University of Belgrade 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

