
54 Telfor Journal, Vol. 5, No. 1, 2013. 

 
Abstract — We have developed a modern air situation 

picture display applicable in air surveillance radars. The 
display is based on commercial of-the-shelf hardware and 
custom software. This paper is focused on the details of the 
development process. Comparison with a similar 
commercially available product is given too. 

Keywords — Air Surveillance, Plan Position Indicator, 
Radar, Scan Conversion 

I. INTRODUCTION 

HE term RADAR was coined as an acronym for radio 
detection and ranging [1], referring to a system which 

obtains knowledge about distant objects by transmitting a 
signal of known waveform and analyzing the received 
echoes. The acronym lost its capitalization during more 
than seventy years of its use, becoming a regular noun – 
radar. An important application area of radar is air 
surveillance, defined as “systematic scanning of a portion 
of the airspace esp. by electronic or visual means to detect 
and track flying aircraft or missiles” [2]. In the rest of this 
paper, “radar” will refer to “air surveillance radar” while 
“targets” will refer to “flying aircraft or missiles”. 

A typical radar transmits short pulses via a directional 
antenna which is mechanically rotated at a constant rate. If 
antenna is directed towards a target, a small portion of 
transmitted energy is reflected from the target back to the 
antenna, appearing as a pulse in received signal. A delay 
between transmitted and received pulses is proportional to 
distance (or range) of the target. The signal of current 
antenna direction (antenna azimuth) and the demodulated 
received signal (radar video) are a basis for generating the 
air situation picture. 

Older radars presented the air situation picture to 
operators using a display called plan position indicator 
(PPI). In PPI, which is based on cathode ray tube (CRT) 
technology, radar video and antenna azimuth are used 
directly by the circuitry controlling electron beam steering 
and intensity, resulting in a map like presentation in polar 
coordinates of range and azimuth. The display is dark 
except when echo signals are present, and the phosphor 
layer covering the CRT ensures the prolonged visibility of 
target echoes, a feature called persistence. An air situation 
picture generated by using only radar video and antenna 

 
Ministry of Education, Science and Technological Development of 

Republic of Serbia supported the work: M. Stamatović, M. Jevtić, U. 
Kisić, M. Tatarević, T. Pajić and K. Marković by grant TR-32051. 

All authors are with University of Belgrade, Institute Mihailo Pupin, 
Volgina 15, 11060 Belgrade, Serbia. Corresponding author is Miloš 
Jevtić (e-mail: milos.jevtic@pupin.rs). 

azimuth is sometimes called a raw radar picture. 
While PPI was an impressive invention for its time, it is 

expensive, bulky and complicated for maintenance. 
Thanks to advances in digital technology, it is now 
possible to present raw radar picture using computers and 
raster displays. The main challenge with this approach is 
that two specific features of PPI now have to be emulated. 
The first feature is that PPI is tailored for visualizing the 
information described with radar video and antenna 
azimuth. With raster displays this information must be 
transformed from polar to Cartesian coordinate system, 
through a process called scan conversion. The second 
feature is persistence. 

Besides the raw radar picture, modern radar displays 
usually visualize two more categories of data. The first 
includes plots and tracks generated by automatic detection 
and tracking (ADT) systems inherent to most modern 
radars [3]. The second includes various maps, markers, 
and other additional information needed by radar 
operators. 

Thanks to our previous experience with software based 
radar display techniques [4], a user has asked us to 
develop a modern radar display which would be used as a 
cost-effective PPI replacement in legacy radars and 
operations centers. The product was entitled Digital Radar 
Indicator (DRI). The rest of the paper is organized as 
follows. In the second section, the development process of 
DRI is described in detail. In the third section, DRI is 
compared with a similar product, and the fourth section 
concludes the paper. 

II. DEVELOPMENT PROCESS 

To develop DRI, we followed a systematic approach 
consisting of the following activities: 
 Requirements capture, 
 Requirements analysis, 
 Design, 
 Implementation, 
 Testing. 

A. Requirements capture 

Requirements breakdown for DRI is given in Fig. 1 in 
the form of Systems Modeling Language (SysML) 
requirement diagram. Original specification is represented 
with “Source Requirements” package, consisting of six 
statements, some of which we decomposed into simpler 
sub-statements. 

Modern Air Situation Picture Display for 
Air Surveillance Radar Applications 

Milovan Stamatović, Miloš Jevtić, Member, IEEE, Una Kisić, Member, IEEE, Miloš Tatarević, 
Tanja Pajić, Member, IEEE, and Ksenija Marković, Member, IEEE 

T



Stamatović et al.: Modern Air Situation Picture Display for Air Surveillance Radar Applications 55 

 
Fig. 1. Requirements breakdown for DRI. 

 
We also derived two new requirements which are shown 

in light blue color in Fig. 1. 

B. Requirements analysis 

In this phase we decomposed DRI into functional 
blocks according to the requirements from previous phase. 
During the analysis we only considered requirements 

which are leaves of requirement hierarchy trees. Identified 
functional blocks, their composition and relations with the 
requirements are shown in Fig. 2 by means of SysML 
block definition diagram. Most of the functionality is 
allocated to the DRI Application block. A list of its sub-
blocks, along with their responsibilities, follows: 



56 Telfor Journal, Vol. 5, No. 1, 2013. 

 
Fig. 2. Functional decomposition of DRI. 

 
 Air situation presentation manager (ASPM) – 

graphically displaying all elements of air situation 
picture and handling user interaction. It consists of: 
o Raw radar picture renderer (RRPR) – rendering 

scan-converted digitized radar video with 
emulated persistence. 

o Plots renderer (PR) – rendering plots. 
o Non-interactive graphics renderer (NIGR) – 

rendering range and azimuth markers, code grid, 
maps and airways. Parsing geographic data files. 

o Interactive graphics manager (IGM) – rendering 
and handling user interaction with tracks and 
arbitrary graphics objects. 

 Tracks table presentation manager (TTPM) – 
responsible for displaying tracks in tabular form. 

 Air situation data manager (ASDM) – storing data 
used by ASPM and TTPM. 

 Display preferences editor (DPE) – enabling user to 
edit display preferences. 

 Display preferences manager (DPM) – storing 
display preferences. 

 External systems interface (ESI) – exchanging data 
(radar video, plots, tracks, manual tracking requests) 

with acquisition and ADT systems. 

C. Design 

To design an adequate software architecture, we tried to 
connect previously identified functional blocks with well 
known problems, solutions and techniques in software 
development domain. 

For example, ASPM and TTPM need to represent the 
same data (tracks) stored in ASDM, but in different ways 
(graphical and tabular). This is typically addressed with 
Model-View-Presenter (MVP) design pattern [5]. In MVP, 
views are active windows which display data stored in the 
model, and handle basic user interactions. These 
interactions are immediately passed to presenters (each 
view is connected with exactly one presenter, forming a 
presenter-view pair) which perform actions on the model. 
To further separate data from its presentation, we 
employed Passive View [6] variant of MVP. In this 
scheme, there are no dependencies between view and 
model, and a presenter takes the responsibility of updating 
the view. To enable presenters to be notified of model 
changes, we applied Observer design pattern [7]. 

In this context, ASDM is the model, ASPM is divided 



Stamatović et al.: Modern Air Situation Picture Display for Air Surveillance Radar Applications 57 

into Air situation presenter (ASP) and Air situation view 
(ASV), and TTPM is divided into Tracks table presenter 
(TTP) and Tracks table view (TTV). Since most data 
changes originate from external sources, we figured that 
ESI could be treated as a “presenter”. For instance, when 
ADT system updates a track, it is like a virtual “user” 
interacted with the track via a virtual “view”, causing 
“presenter” (i.e. ESI) to change the model, in turn updating 
ASV and TTV. Similarly, when a real user interacts with a 
track via ASV, ASP changes the model, ESI gets notified 
and updates a virtual “view” informing a virtual “user” 
(i.e. ADT system) of a manual tracking request. 

IGM and PR perform typical presenter tasks, and it was 
clear at this point that they should actually be subunits of 
ASP. These two could be blended together, but since there 
is no user interaction with plots, PR was separated to allow 
for performance optimization. While being subordinated to 
ASP, RRPR and NIGR don’t follow MVP scheme. 

To emulate persistence effects in real-time, RRPR needs 
to update all pixels of raw radar picture in every frame. 
For performance reasons, raw radar picture data is not kept 
in the model but in RRPR, and digitized radar video is 
transferred from ESI directly to RRPR, so the MVP 
architecture is bypassed completely. We decided to use 
reverse scan conversion in RRPR. In this approach, each 
screen pixel is mapped from Cartesian to polar coordinates 
and filled with a value of closest radar video sample. 

Data used to render non-interactive graphics objects is 
constant during one DRI session, so there is no need for it 
to be kept in the model. To render a graphical 
representation of this data, a large number of graphics 
primitives must be drawn, which is a time consuming 
operation. On the other hand, this representation changes 
only upon user action (a change of display preferences). 
Therefore we designed NIGR to render graphics objects 
into a bitmap, and to update the bitmap only when display 
preferences change. The bitmap is at ASP’s disposal to 
blend it with other layers when updating the ASV. We 
envisioned NIGR to have a separate thread in which 
drawing to the bitmap is done. Rendering is partitioned 
between separate renderers for markers, code grid, airways 
and maps. Maps and airways renderers are responsible for 
parsing geographic data files too. 

DPM was designed as a globally accessible entity which 
employs Observer pattern to notify presenters and 
renderers of a display preferences change. DPE is 
partitioned over several windows which consist of generic 
and custom graphical user interface (GUI) controls. 

D. Implementation 

For performance reasons DRI Application was written 
in C++ programming language. To simplify and 
streamline the development, we employed Qt application 
framework [8], which is the most modern framework for 
C++ development, besides being open-source and multi-
platform. To achieve credible emulation of PPI including 
persistence effects, lots of pixels need to be updated in 
every frame, and the frame rate itself needs to be high. 
This implied the use of hardware acceleration, and we 
chose OpenGL as an application programming interface 

(API) to accelerated graphics. OpenGL was chosen 
because it is an industry standard supported on many 
platforms and it integrates well with Qt. UML class 
diagram showing DRI Application’s implementation is 
given in Fig. 3. 

Qt’s Graphics View Framework (GVF) was a basis for 
implementing functionalities related to interactive 
graphics. In this implementation, ASV is a class derived 
from QGraphicsView, while IGM is partitioned over 
several QGraphicsItem derived classes (responsible for 
rendering graphics objects on the view and handling user 
interaction with them) and a QGraphicsScene derived 
class (responsible for keeping items together and storing 
their external state, e.g. selection and focus). To update 
ASV, IGM just updates QGraphicsItems, while actual 
rendering to ASV is performed at a later time, initiated by 
the GVF. In contrast, PR and RRPR bypass GVF and 
render directly to ASV. The same goes for ASP when 
rendering a bitmap generated by NIGR. 

The main challenges in RRPR implementation were 
emulation of persistence effects and scan conversion. In 
PPI, a point on the CRT remains illuminated for some time 
after it was hit by an electron beam thanks to 
phosphorescence effect, but this illumination slowly fades 
away as time passes. We can think of the phosphor layer 
as some form of storage. To emulate persistence effects in 
digital domain, we also need storage, sometimes called 
polar store. It is easiest to think of polar store as of a 
matrix of radar video samples, with vertical coordinate 
being azimuth and horizontal coordinate being range. 
Eventually, thanks to scan conversion, the value of each 
radar video sample in polar store will affect the 
illumination of one or more pixels on the raster display. 
Therefore to emulate a fading effect, the values of samples 
in polar store must be decremented as time passes. There 
are two approaches to doing this: scan-based (the value of 
a sample is decremented only when antenna revisits that 
sample’s azimuth after making a full rotation), and real-
time (each sample’s value is decremented in regular time 
intervals regardless of antenna rotation). We opted for 
real-time variant as it enables emulation of nonlinear 
fading effects, in turn providing very realistic imitation of 
PPI as required by the user. In our implementation, polar 
store is a set of textures in video memory, where each 
texel stores a value of one radar video sample. 
Decrementing of sample values and updating of the 
textures with new samples is performed by a fragment 
program (FP). Scan conversion is achieved by mapping 
polar store’s textures to meshes which approximate circle 
sectors and then rendering the meshes. Interpolation 
inherent to OpenGL rasterizer assures that there are no 
holes in final picture. To paint a screen pixel in a preferred 
color, another FP is utilized. 

The most complex part of NIGR implementation was 
maps renderer. Requirements specified that geographic 
data should be read from files supplied by user. The 
format of these files is the ESRI Shapefile format 
(Shapefile) [9], and map projection used is Universal 
Transverse Mercator (UTM). 



58 Telfor Journal, Vol. 5, No. 1, 2013. 

 
Fig. 3. Implementation of DRI Application. 

 
Shapefile stores spatial geographical data as geometry 

and attribute values in compact data sets. Geometry values 
are simple primitive geometrical data types of points, lines 
and polygons and do not contain topological data which 
make it suitable for fast drawing modes and edit functions. 

A raw radar picture is naturally presented in a plane 
tangential to radar position. To accurately present maps 
over the raw radar picture, we first transform UTM 
coordinates of zone numbers, easting and northing to 
geodetic coordinates of longitude and latitude and then 
project them on a mentioned plane. Since geographic data 
files can contain multiple types of geographic data, such as 
cities, rivers, lakes, etc., we organized the data structures 
in a multilevel manner. The Geocontainer class is a top 
level structure which contains various types of geographic 
elements. Each geographic element – GeoEntity, can 
consist of different geometry object types supported in the 
Shapefile format. GeoEntity is an array of simple objects 
that are defined by their pixel representation in a 
calculated zoom value and attribute data. 

Fig. 4 shows a screenshot of DRI with various elements 
of air situation picture. 

E. Testing 

The first intended use of DRI was in a system called 
Mobile Air Surveillance Center (MASC). MASC can be 
connected to several types of legacy radars and it includes 
ADT system and multiple operator posts (implemented 
with DRIs). MASC prototype successfully passed 
acceptance tests performed by the user. During these tests, 
DRI’s performance was evaluated by comparison with 
several reference displays including legacy radar PPIs and 
other air situation displays. DRI fulfilled all the user 
requirements and its performance was satisfactory. 

III. RELATED WORK 

We compared DRI with a similar product, RadarView 
from Cambridge Pixel Ltd [10]. Both DRI and RadarView 
are based on COTS hardware and custom software running 
under a general purpose operating system. We compared 
the features of both products and summarized comparison 
results in Table 1. It must be noted that some features of 
RadarView were omitted from the comparison as they are 
not relevant for an air surveillance radar display. 



Stamatović et al.: Modern Air Situation Picture Display for Air Surveillance Radar Applications 59 

 
Fig. 4. Elements of the air situation picture as displayed by DRI. 

 
It can be seen from Table 1 that there are no substantial 

differences between DRI and RadarView, though the latter 
has a richer set of features. This is not surprising since 
RadarView is a commercially available product with a 
broad application scope, while DRI was developed from 
specific user requirements. 

 
TABLE 1: COMPARISON WITH SIMILAR PRODUCT. 

 RadarView DRI 
Raw radar picture with 
programmable color, 
persistence emulation and 
retained trails on view 
change 

yes yes 

Tracks yes yes 
Max. num. of air situation 
windows 

5 1 

Max. num. of radar video 
channels per window 

2 1 

A-scope yes yes 
B-scope optional no 
Raster maps yes no 
Vector maps yes yes 
Range and azimuth markers yes yes 
Editable arbitrary graphics no yes 

IV. CONCLUSION 

A modern air situation picture display based on COTS 
hardware and custom software has been developed, by 
following a systematic approach which we describe in 

detail. A comparison of developed system with a 
commercially available radar display which employs 
similar implementation principles didn’t reveal substantial 
differences when core features are considered. While the 
developed system is intended for air surveillance radar 
applications, it could be modified for use in other types of 
radars which operate on a similar principle (such as civil 
marine radars or vessel tracking service radars) or in 
fusion centers of distributed surveillance systems. These or 
similar modifications could be the subject of future work. 

REFERENCES 
[1] D. Barton, S. Leonov, Radar Technology Encyclopedia. Norwood, 

MA: Artech House, 1997, pp. 320-321. 
[2] Merriam-Webster Online Dictionary. Available: 

http://www.merriam-webster.com 
[3] W. G. Bath, G. V. Trunk, “Automatic detection, tracking, and 

sensor integration,” in Radar Handbook, 3rd ed., M. I. Skolnik, Ed. 
New York: McGraw-Hill, 2008. 

[4] M. Jevtić, M. Stamatović, „Radar Data Processing and 
Visualization on Desktop Platforms,“ in Proc. 17th 
Telecommunications forum TELFOR 2009, pp. 1315-1318. 

[5] M. Potel, “MVP: Model-View-Presenter The Taligent 
Programming Model for C++ and Java,” Taligent, Inc., 1996. 

[6] M. Fowler. (2012, Sep., 21.) Development of Further Patterns of 
Enterprise Application Architecture [online]. Available: 
http://www.martinfowler.com/eaaDev/index.html 

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software. Boston: Addison-
Wesley Pub Co, 1995, pp. 293-304. 

[8] J. Blanchette, M. Summerfield, C++ GUI Programming with Qt 4, 
2nd ed., Prentice Hall, 2008. 

[9] Esri Shapefile Technical Description, Esri, Redlands, CA, July 
1998. 

[10] RadarView - Primary Radar Visualisation, Cambridge Pixel Ltd, 
UK, 2012. 

 


