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Abstract — A new analytical-numerical method based on 

singularity extraction is presented for efficient and accurate 

evaluation of one of the reflected Sommerfeld integrals over 

multilayered media backed by a conducting (PEC) plane. 

Method is based on extraction of all the poles of the 

integrand. The method is demonstrated on one element of the 

tensor multilayered Green’s function, where only the 

singular part of the integrand, i.e. the reflection coefficient, is 

taken into consideration, as the cause of the largest 

calculation difficulties. It was also shown that the method 

practically eliminates all the branch cut singularities except 

for one. 

Keywords — Sommerfeld integrals, singularity extraction, 

multilayered media 

I. INTRODUCTION 

ALCULATION of electromagnetic (EM) fields in the 
presence of a half-space or  multilayered media, 

whose exact analytical solution is given by the so-called 
Sommerfeld integrals, basically established by the 
classical paper [1], is still in the focus of research. 
Applications are many. Historically the first was radio 
communication over the earth. Some of the modern 
applications are ground penetrating radars for detecting 
buried objects, wall penetrating radars for detecting 
installations, material defects and inner cracks, through the 
wall imaging for security applications and geophysical 
search for gas and oil by using EM waves. However, the 
most important ones are the increasingly growing 
application of the multilayered printed circuit boards 
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(PCB) on microwave and millimeter-wave frequencies, 
where low-frequency approximations and corresponding 
design methods are not accurate enough. Moreover, such 
multilayered PCBs often include printed or other antennas 
placed mostly on the top layer. 

A long series of scientific publications on this matter 
can be traced. A representative list of works can be found, 
e.g. in [2]. Both exact methods (based on the Sommerfeld 
integrals) and various approximate methods were 
developed. The goal of most of these methods is to 
provide an efficient and accurate evaluation of the Green 
function for a multilayered structure.  

In this paper one of the reflected multilayered 
Sommerfeld integrals is chosen for demonstration of the 
method, namely the zz-component of a tensor Green 

function ( AG ) for the magnetic vector-potential [3]. 

II. ANALYTICAL FORM OF THE MULTILAYERED GREEN 

FUNCTION Azzg  

Consider a multilayered structure, consisting of M  
layers ( 1M > ), where the bottom layer is a perfectly 
conducting plane (Fig.1). The structure is considered 
infinite and uniform in directions perpendicular to z-axis. 
Dielectric layers are non-magnetic and could be lossy or 
lossless, represented by their equivalent complex 

permittivity, rmε , and thickness, mh , 1, , 1m M= −… . 

The upper half-space does not have to be vacuum, thus, in 

general, r0 1ε ≠ . A source and field point are above the 

structure and their mutual position is denoted by heights 

sz  and fz  and the radial distance ρ , where any of these 

three relative coordinates can be zero or approach zero in 
the limiting case. If all the three coordinates approach zero 
the tensor Green function becomes singular (tends to 
infinity). 

The element of a tensor Green function chosen for 

demonstration of the method is Azzg , whose compact 

(normalized) form [3] is given by the Sommerfeld integral 

 
0

( , , ) ( )Azz Azzg F Z R dα Ρ α α

∞

= ∫ , (1) 

where 0 s f( )Z z zβ= + , 0Ρ β ρ=  and 0 0 0β ω ε µ= . 

Function ( , , )F Zα Ρ  comprises the Bessel function and an 

exponential function and its only singularity (in the 
complex α -plane), as it contains the expression 
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2
0 1u α= − , is the branch point at 1α= . Function 

( )AzzR α  is often called a reflection coefficient, as it can be 

interpreted as a reflection coefficient for the plane wave 
incident to the multilayered media. 

 
Fig.1. Layered media backed by the PEC plane. 

For lim ( ) 0Azz AzzR Rα α→∞ ∞= ≠  significant 

improvement of integral convergence is obtained when 

( )AzzR α  is represented as 1( ) ( )Azz AzzR R Rα α∞= +  and 

the first of the resulting integrals solved analytically [4], 

j

0
( , , ) e /R

Azz AzzF Z R d R Rα Ρ α
∞ −

∞ ∞=∫ , 2 2R ZΡ= + . 

We will call function 1( )R α  “a reduced reflection 

coefficient”. Extraction of this term is important as the 

function 1( )R α  for large arguments behaves as 2α−  [3] 

and alone provides the convergence of the remaining 

integral, 1
0

( , , ) ( )F Z R dα Ρ α α
∞

∫ . This integral cannot be 

solved analytically. More asymptotic terms could be 
extracted and the corresponding integrals solved 
analytically [3], [5]. This will be addressed shortly later in 
the text. 

The oscillating nature of function F  and its slow decay 
to zero for small or zero values of Z  make its numerical 
integration difficult. These two difficulties can, however, 
be solved in relatively standard and reported ways. A more 

serious difficulty is that 1( )R α  contains singularities in the 

form of poles and branch cut singularities (at points where 
the branch cuts of the multivalued square root function 
starts). Every layer introduces one pair of these two types 
of singularities. For lossless layers these singularities are 
on the α -axis. For layers with small losses (good 
dielectrics) they are very close to the α -axis, what is 
proven to be an even bigger difficulty for integration [4]. 
In this paper, the second, more demanding, case will be 
chosen for demonstration of the method. 

In the most demanding case of the Green function 
evaluation, and that is the case when all the three 

coordinates, sz , fz  and ρ , approach zero, and, thus both 

Z  and Ρ  in (1) also approach zero, the F  function is for 

small arguments close to one and very slowly decaying. 
Thus, the integral, 

 2 1

0

( )I R dα α

∞

= ∫ , (2) 

will be considered for demonstration of the proposed 

method. Due to 2α−  behavior of 1( )R α  this integral is 

convergent. For solving the initial integral (1), the method 
that will be presented can be combined with techniques for 
efficient solving the integral if only function F  is 
considered, leading to a hybrid and adaptive overall 
method, similar to that reported in [3], [4]. Function 

( )AzzR α  is given by the recurrence formula that is 

presented here according to [6] and after some elementary 
transformations, 
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Here th( )•  is a hyperbolic tangent and 0m mH hβ= . In the 

case that the bottom layer is a PEC plane, is we considered 

in this work, 0Mk = . In what follows we will consider 

also complex values of α  and will denote such a complex 
variable as z . From the recurrence equations it can be 

seen that: 1. AzzR  is a function of 2α , thus, any of its 

series expansions contains only even powers of α , 2. 

( )AzzR z  in the complex plane has branch cut singularities 

at points rmε , 0, , 1m M= −… , where the function is 

finite, but its derivative is infinite. It is also shown (e.g. in 

[7], [8]) that ( )AzzR z  has a number of poles in the second 

quadrant ( / 2 arg{ } 0zπ− < ≤ ). We will assume that 

locations of those poles, 0iz , 1, ,i N= … , and their 

residuums can be efficiently numerically determined (e.g. 
as explained in [7]). 

 To derive 1( )R α  we need to obtain 

lim ( )Azz AzzR Rα α∞ →∞= . For this reason we first obtain 

lim th( )m mu Hα→∞ lim th( ) 1
mu m mu H→∞= = . Next, for 

α→∞ , m mz k=  for every m  and the result is 

 0 1 r1 r0

0 1 r1 r0

limAzz

k k
R

k k
α

ε ε

ε ε
∞ →∞

− −
= =

+ +
. (5) 

This is exactly the same value as for the case when there is 
only one layer (the first) filling the whole lower half-

space. The value of AzzR ∞  is the constant term in the 

series expansion of ( )AzzR α  around infinity (which is 

equivalent to expansion of (1/ )AzzR x  around 0x= ). As 

every expansion of ( )AzzR α  has only even powers of α , 

the first term in expansion of 1( )R α  around infinity is the 

2α−  term, as already mentioned. 
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Fig.2. Reduced reflection coefficient along the real axis. 

III. EXTRACTION OF POLES OF THE INTEGRAND 

As an example for demonstration of the method, in the 
rest of the paper, two-dielectric layered media backed by a 

PEC plane ( 3M = ), with parameters r0 1 j0ε = −  (air), 

r1 9 j0.1ε = − , r2 4 j0.01ε = − , 1 2H = , 2 1H =  will be 

considered. 

Graph of the reduced reflection coefficient 1( )R α , for 

the chosen parameters of the layered media is shown in 

Fig. 2, and in the complex plane, denoted 1( )R z , in Fig. 3. 

Large values of 1( )R α  in Fig.1 are not infinite, because 

the three poles are somewhat displaced from the real axis (
α -axis). However, direct numerical integration of such a 
function, without the use of special methods is highly 
inefficient. 

In the complex plane, function 1( )R α  has also branch 

cuts, one for each of the three functions mu , equation (4), 

namely 0,1,2u . Each branch cut doubles the multiplicity of 

the complex functions (as the square root is a two-valued 
function). These branch cuts can be seen in Fig.4. The 

multi-valued nature of 1( )R α  is removed by the condition 

/ 2 arg{ } / 2zπ π− < ≤+ , but branch cut singularities 

(essential singularities) remain. 

 
Fig.3. Absolute value of the reduced reflection coefficient 

in the complex plane. 

The method of extracting poles from the integrand is the 

following. In the complex plane, function 1( )R z should be 

represented as 

 
3

1 s 0 3
1

( ) ( ) ( )i i

i

R z R f z z f z
=

= − +∑ , (6) 

where 0iz  are locations of poles, the pole singularities are 

completely included in a properly chosen function f  and 

siR  are coefficients, directly connected to residuums of 

1( )R z . The remaining function 3( )f z  is then considered 

for numerical integration, possibly also after some 

transformations. Function f  must provide that 

0
0

( )if z z dz
∞

−∫  is convergent. The simplest choice for 

function f  seems to be function 1
0( )iz z −− . However, 

this does not lead to the convergence of the integral, as this 

function behaves in infinity as 1α− . Instead, we 
considered the function 

 

2

e
( )

x

f x
x

−

= , (7) 

whose primitive function is an exponential integral 

function, Ei( )x . Further properties of ( )f x  important 

here are: 1. its residuum in the pole 0 0x =  equals one, 2. 

its series expansion around infinity is identically equal to 
0, and 3. for real arguments it is an odd function. Due to 

the first property, siR  is the residuum of 1( )R z .  

Due to the second property, series expansion of 3( )f z  

at infinity is the same as of the function 1( )R z . This is a 

very convenient property. Namely, the majority of 
techniques for speeding up the integral convergence 
performs the expansion of the integrand at infinity. By 
applying function (7), our method enables application of 
those techniques in an unchanged form.  

 
Fig.4. Branch cuts of the reduced reflection coefficient. 

Function 3( )f z  has no poles and is depicted 

graphically, along the real, α -axis in Fig.5. Although with 
no poles it is obvious that it is not yet suited for numerical 
integration due to its shape at 1α=  (branch cut 
singularity).  
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IV. EXTRACTION OF BRANCH CUT SINGULARITIES  
OF THE INTEGRAND 

The remaining integrand, 3( )f z  has, theoretically, 

branch cut singularities at points riε , 0,1,2i= , the first 

being at 0 1α =  and the other two very close to 2 3α =  

and 3 2α = . From Fig.5 and also after the very detailed 

analysis around points 2α  and 3α , we did not notice any 

significant singular behavior of the function. Elimination 
of those two branch cut singularities could be attributed to 
the fact that the already extracted poles were located very 
close to those branch cut singularities and that our 
extraction of those poles practically eliminated those 
singularities to. This property, which we observed also for 
other arrangements and parameters of the layered media as 
in Fig.1, is not yet clearly reported or stated in the 
published work. This means that only the essential 

singularity at 0 1α =  needs to be extracted. This is 

efficiently and completely done by the well-known change 

of variables [9], sinα θ=  for 0 1α< <  and ch( )tα=  

for 1α> . The transformed function 3f  is depicted in 

Figs. 6 and 7. The size of the interval in which this change 
of variables is applied is not critical. We adopted, 
somewhat arbitrarily, 2α< . 

 
Fig.5. Reflection coefficient after extraction of poles 

(function f3), along the real axis. 

 
Fig.6. Function f3 after the change of variables, for α<1. 

V. NUMERICAL RESULTS 

As a numerical demonstration of the proposed method, 

the method is applied for integration in the interval (0,4) , 

in whose radius around a complex origin all the initial 
singularities were located. Integration is performed on 

subintervals of length 1α∆ = , by the use of different 
orders of the standard Gauss polynomial integration 
formula. Fig.8 shows the relative error of integration for: 
1. direct integration of the reduced reflection coefficient, 

1( )R α , 2. direct integration after extracting the poles, i.e., 

direct integration of 3( )f α  without the change of 

variables around 1α=  and 3. as in point 2, only after a 
change of variables around 1α= . Convergence for the 

direct integration of 1( )R α  is relatively slow. For the first 

accurate digit, a formula of the order about 30 must be 
applied. The fastest convergence, up to errors of about 

510−  has been achieved by the third method, resulting in 

error of less than 510− for the formula of the 5th order. 
The convergence of the second method is in between. 

 
Fig.7. Function 3f  after the change of variables, for α<1. 

 
Fig.8. Relative error of integration. 

VI. CONCLUSION 

The proposed method for extraction of singularities 
from the reflection coefficient of the Sommerfeld integrals 
for the multilayered media efficiently extracts the complex 
poles of the reflection coefficient. As a side effect of the 
method, branch cut singularities are also practically 

removed, except for the singularity at point (1,0)  in the 

complex plane, which is further removed by a simple 
transformation. This enables efficient numerical 
integration of the remaining integrand. The method does 
not change the behavior of the reflection coefficient 
function for large arguments, i.e. does not alter its series 
expansion around infinity, which could be very useful for 
further application of methods for speeding up the 
convergence of the integral. 
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