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Abstract—It is well known that the stochastic nature of the 

interference deeply impacts the performance of emerging and 
future wireless communication systems. In this work we 
consider an ad hoc network where the nodes move according 
to the Random Waypoint mobility model. Assuming a time-
varying wireless channel due to slow and fast fading and, 
considering the dynamic path loss due to the mobility of the 
nodes, we start by characterizing the interference 
distribution caused to a receiver by the moving interferers 
located in a ring. For this purpose, we consider a receiver 
located at the center of the simulated region. Based on the 
distribution of the interference’s power, we evaluate different 
methodologies to estimate the power of the interference in 
real-time. Results achieved with a Maximum Log-likelihood 
estimator (MLE) and a Probability Weighted Moments 
(PWM) estimator are compared. The accuracy of the results 
achieved with the proposed methodologies in several 
simulations show that they may used as an effective tool of 
interference power estimation in future wireless 
communication systems, exhibiting high accuracy even when 
the number of samples is low.  
Keywords— Interference Estimation, Ad Hoc Networks, 

Mobility. 

I. INTRODUCTION 
HE characterization of the interference in wireless 
networks plays an important role in several 

applications, ranging from localization [1], security [2], 
spectrum sensing [3] and others. In the majority of 
wireless scenarios the characterization of the aggregate 
interference is a complex task. Aggregate interference 
caused by multiple nodes spatially distributed in a given 
area is mainly due to the wireless propagation effects, 
especially: the attenuation of the signal with distance (path 
loss); the obstruction of the propagation path between 
transmitter and receiver by large objects (shadowing or 
slow fading); and the reflection of the propagated signal 
resulting in the reception of multiple copies of the same 
transmitted signal (fast fading or multipath fading). 
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Although the aggregate interference is often caused by a 
high number of nodes, and thus the central limit theorem 
(CLT) applies, most of the times CLT cannot be used due 
to the existence of dominant interferers [16]. 

While several authors model the aggregate interference 
in static networks [4], the assumption of nodes’ mobility 
introduces a novel degree of uncertainty related with the 
position of the nodes and their level of mobility. The 
works already published approaching the characterization 
of the interference in mobile networks are mainly focused 
on interference modeling. The use of statistical 
information related with the mobility of the interferers in 
the interference modeling was carried out in a few and 
very recent works [5]–[7].  

In [5] the aggregate interference caused by static nodes 
(cells) is characterized for the uplink channel of a single 
terminal moving according to a random pattern. In this 
case the interference is caused by static nodes and the 
terminal mobility only causes a time-varying displacement 
with respect to different cells.  The work in [6] considers 
an ad hoc network scenario where the nodes move 
according to the random direction model (RD). The 
probability density function (PDF) of the distance between 
any pair of nodes is used to characterize the aggregate 
interference due to path loss. Because a static receiver is 
assumed in the RD model, the distance variables between 
interferers and the receiving node are independent, and the 
CLT applies. In this case, a Gaussian modeling approach 
is used. [7] assumes that the interferers may move 
according to the random waypoint mobility model (RWP). 
Differently from the RD uniform model, in the RWP 
model the vertical and horizontal components of the 
nodes’ position may be slightly correlated [10], and the 
assumptions considered in [6] for the RD model do not 
hold for the RWP model. Consequently, to deduce the path 
loss interference, [7] only considers the contribution from 
the nearest interferer to the receiver, neglecting the 
contribution of the nodes farther away. Recently, we have 
proposed an interference model for ad hoc networks where 
the nodes move according to the RWP and all the 
contributions of the nodes located within a defined region 
are considered [8]. Differently from [7], in [8] we model 
the aggregate interference considering the contribution of 
multiple nodes acting as interferers.  

The estimation of the interference caused by multiple 
nodes transmitting in the neighborhood of a receiving node 
has been studied in a few scenarios. [17] proposes a 
method of interference estimation for CDMA systems 
where, knowing prior statistical knowledge of interference, 
it is possible to determine the coefficients of an estimator 
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by solving a set of linear equations. The authors propose a 
model for the system and its performance analysis is 
evaluated through the expected value of the estimation 
error and the approximate expression for the probability of 
error. [18] approaches the interference estimation for 
multi-layer multi-user multiple-input and multiple-output 
(ML-MU-MIMO) transmission for LTE-Advanced (long 
term evolution) systems. In this work the authors admit a 
User-specific reference signal (UE-RS) and investigate 
various interference covariance estimation schemes in 
LTE-Advanced systems. [18] shows the significant 
influence of the interference estimation schemes on the 
system performance at the link level. In [19] the authors 
consider a new interference estimation scheme for a 
wireless femto cell system, which is surrounded by other 
femto cells using the same band.  

In this work we start by characterizing the distribution 
of the interference caused to a receiver by multiple moving 
nodes located in a ring, considering path loss and slow and 
fast fading. Based on the interference distribution, we 
evaluate two different methodologies to estimate the 
interference in real-time. The proposed methodologies are 
evaluated through simulation. Finally, several scenarios 
are discussed and the achieved results for each one of them 
are presented in order to assess its accuracy. The main 
contribution of this work is the identification of a method 
to estimate the aggregate interference in random waypoint 
mobility networks, leading to accurate results when used 
in real-time. 

The paper is organized as follows. Section II presents 
the general assumptions considered in this work. In 
Section III the distribution of the interference values 
obtained through simulation is approximated by known 
distributions in order to identify possible approximations. 
Section IV describes two estimation methodologies as well 
as the real-time estimates obtained through simulation. 
Finally, Section V concludes the paper by outlining its 
contribution. 

II. SYSTEM DESCRIPTION 
A. Mobility Assumptions 
In this work we consider that nodes move according to 

the RWP mobility model [9]. In a RWP mobility model 
each node is initially placed in a random position (ݔ,  .(ݕ
The position is sampled from the uniform distributions 
represented by ݔ ∈ 	 ሾ0, ܺ௠௔௫ሿ and	ݕ ∈ 	 ሾ0, ௠ܻ௔௫ሿ. (ݔ,  (ݕ
represents the starting point, and the next step is to define 
the ending point (ݔᇱ,  ᇱ), which is also uniformly chosen asݕ
the starting point (i.e. ݔᇱ ∈ 	 ሾ0, ܺ௠௔௫ሿ and ݕᇱ ∈ 	 ሾ0, ௠ܻ௔௫ሿ). 
Then a node uniformly chooses the velocity ݒ ∈	ሾ ௠ܸ௜௡, ௠ܸ௔௫ሿ to move from the starting point to the ending 
point. After reaching the ending point (ݔᇱ,  ᇱ), a nodeݕ
randomly chooses a pause duration ( ௣ܶ), and during this 
period of time it remains stopped in the ending point. After 
elapsing ௣ܶ, a node uniformly chooses a new velocity 
value to move to another ending point uniformly chosen. 
After reaching the ending point a node repeats the same 
cycle as many times as required. 

Considering that Eሾܮሿ represents the expected distance 

between two random points and Eሾ ௪ܸ௣ሿ represents the 
expected velocity of the nodes without considering pause, 
the expected velocity of the nodes considering pause is 
given by 

 

 Eሾܸሿ = ൬ ୉ሾ௅ሿ୉ൣ௏ೢ ೛൧షభ	୉ሾ௅ሿା୉ሾ ೛்ሿ൰	, (1) 

 
where	Eሾ ௪ܸ௣ሿ and Eሾܮሿ are defined in [10] as  Eൣ ௪ܸ௣൧ = 	 ቀ ௏೘ೌೣି௏೘೔೙୪୬(௏೘ೌೣ/௏೘೔೙)ቁ, 
 Eሾܮሿ ൎ 521.405m, and Eሾ ௣ܶሿ represents the expected 
value of the pause duration. 

B. Network Scenario 
The network scenario considered in this work assumes a 

RWP mobility scenario where ݊ nodes move in a region 
defined by the area	ܺ௠௔௫ 	×	 ௠ܻ௔௫. The network model 
considered in this work is illustrated in Figure 1. A fixed 
central node ௖ܰ is located in the center of the scenario (in 
the position (ܺ௠௔௫ 2⁄ , ௠ܻ௔௫ 2⁄ )), which operates as a fixed 
receiver of the mobile transmitting nodes. The objective of 
this paper is the characterization and estimation of the 
aggregate interference caused to ௖ܰ by the hypothetical 
transmitters ሼ ଵܰ, ଶܰ, … , ௞ܰሽ located within the interference 
region, i.e., the mobile transmitters located within the ring 
bounded by the smaller circle of radius ܴ௜ and the larger 
circle of radius ܴ௢. The parameters describing the network 
and the mobility conditions are described in Table 1. 

 

 
Fig. 1 Aggregate interference sensed by ௖ܰ due to the 

hypothetical mobile interferers located in the annulus area ߨ(ܴ௢ଶ − ܴ௜ଶ). 
 

TABLE 1: PARAMETERS ADOPTED IN THE SIMULATIONS. ܺ௠௔௫ 1000 m ݊ 100 

௠ܻ௔௫ 1000 m ௣ܶ 0 s ; 300 s 
Simulation 

time 3000 s ܴ௜ 20 m 

௠ܸ௜௡ 5 m/s ܴ௢ 120 m ௠ܸ௔௫ 20 m/s 
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C. Radio Propagation Assumptions 
This subsection describes the radio propagation scenario 

considered in this work. The total interference power 
received by the node ௖ܰ located in the centre is expressed 
by 

 
௔௚௚ܫ  = ∑ ௜௡ಲೃ೔ೃ೚௜ୀଵܫ 	, (2) 
whereܫ௜ is the interference caused by the i-th node, 
and	݊஺ோ೔ோ೚is the total number of nodes located in the ring 
areaߨ(ܴ௢ଶ − ܴ௜ଶ). The interference power ܫ௜ is given by 
 
௜ܫ  = ்ܲ௫߰௜	ݎ௜ି ఈ	, (3) 
 
where ்ܲ௫ is the transmitted power level of the i-th node 
( ்ܲ௫ = 10ଷmW is assumed for each node). ߰௜	represents 
the fading observed in the channel between the receiver ௖ܰ 
and node ݅ and ݎ௜ is the distance between the i-th interferer 
and the receiver. ߙ	represents the path-loss coefficient. No 
power control is applied. 

The fading ߰௜ includes the small-scale fading and 
shadowing effects. The small-scale fading effect is 
assumed to be distributed according to a Rayleigh 
distribution, which is represented by 
 

 ఍݂(ݔ) = ௫ఙഅమ ݁షೣమమ഑അమ 	, (4) 

 
where	ݔ is the envelope amplitude of the received signal, 
and 2ߪ఍ଶ is the mean power of the multipath received 
signal. ߪ఍ = 1	is adopted in this work. 

Regarding the fading effect, we have assumed that it 
follows a Lognormal distribution 

 

 క݂(ݔ) = ଵ√ଶగ	ఙ഍	௫ ݁ష(ౢ౤(ೣ)షഋ)మమ഑഍మ 	, (5) 
 

whereߪక is the shadow standard deviation when ߤ = 0. 
The standard deviation is usually expressed in decibels and 
is given by ߪకௗ஻ = కߪ10 ln(10)⁄ . For	ߪక → 0, no 
shadowing results. Although (5) appears to be a simple 
expression, it is often inconvenient when further analyses 
are required. Consequently, [11] has shown that the log-
normal distribution can be accurately approximated by a 
gamma distribution, defined by 
 

 క݂(ݔ) = ଵ୻(ణ) ቀ ణఠೞቁణ 	ణିଵ݁ି௫ݔ ഛഘೞ	,	 (6) 
 

whereߴ is equal to 1 ቀ݁ఙ഍మ − 1ቁൗ  and ߱௦ is equal to ݁ఓඥ(ߴ + 1) ⁄ߴ . Γ(. )	represents the Gamma function.The 
probability distribution function of the fading ߰	is thus 
represented by 
 

 ట݂(ݔ) = ଶ୻(ణ) ቀ ణఠೞቁഛశభమ ഛషభమݔ ణିଵܭ ൬ටସ	ణ	௫ఠೞ ൰	, (7) 
 
which is the Generalized-K distribution, where ܭణିଵ(. ) is 
the modified Bessel function of the second kind. 

III. CHARACTERIZATION OF THE INTERFERENCE 
DISTRIBUTION 

Following the assumptions considered in the previous 
section, several simulations were performed considering 
different propagation and mobility conditions. Regarding 
the mobility conditions two different scenarios were 
defined: 

 
• Mobility scenario 1 - ௠ܸ௜௡ = 5m/s, ௠ܸ௔௫ =20m/s, and ௣ܶ = 0s, representing an average 

node's velocity Eሾܸሿ = 10.82	m/s; 
• Mobility scenario 2 - ௠ܸ௜௡ = 5m/s, ௠ܸ௔௫ =20m/s, and ௣ܶ = 300s, representing an average 

node's velocity Eሾܸሿ = 1.50	m/s. 
•  

Regarding the propagation conditions, three different 
scenarios were defined representing different path loss 
coefficients and fading variance: 

 
• Radio scenario 1 – ߙ = 2 and ߪకௗ஻ = 3dB; 
• Radio scenario 2 – ߙ = 4 and ߪకௗ஻ = 3dB; 
• Radio scenario 3 – ߙ = 2 and ߪకௗ஻ = 6dB. 

 
During the simulations, the interference power sensed by 

the node ௖ܰ was sampled every second in order to 
compute its Cumulative Distribution Function (CDF). 
Figure 2 presents the results computed from the simulation 
data (“Simulation” curve represented in the figure). The 
samples acquired in 1000	simulations of 3000 seconds, 
totaling a sample set of ݈ = 3 × 10଺samples, were also 
used to determine the parameters of a set of different 
probability density functions (PDFs) using a maximum-
likelihood (ML) fitting methodology. For each one of the 
considered PDF ݂, an average logarithm likelihood was 
defined as follows 

 
 ො݃ = ଵ௟ ∑ ln ௟௞ୀଵ(௞|Θݔ)݂ 	, (8) 

 
whereΘ represents the parameters of the PDF and ݔ௞ 
represents each individual sample. ML was used to 
maximize the likelihood in order to determine Θ, which is 
described as follows 
 
 Θ෡ெ௅ா = 	 argmax஀ ො݃(Θ; ,ଵݔ … ,  . (9)	௟)ݔ

 
Figure 2 represents the CDFs computed with the 

parameters obtained in (9) for the Generalized Extreme 
Value (GEV) and Gamma distributions. As illustrated, the 
fitting obtained with the GEV distribution presents a better 
approximation for the different mobility and radio 
propagation conditions. Because of this observation, the 
estimation methods proposed in the next section assume 
that the interference distribution follows a GEV 
distribution. 

IV. INTERFERENCE ESTIMATION 
This section assumes that the aggregate interference can 

be approximated by a GEV (Generalized Extreme Value) 
distribution, being its PDF represented by 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 2 Comparison of the interference CDF for different 
scenarios: (a) Radio scenario 1; (b) Radio scenario 2; (c) 

Radio scenario 3. 
 

;ݔ)݂  ,ߪ ,ߛ (ߤ = ଵఙ  , (10)	ఊାଵ݁ି௧(௫)(ݔ)ݐ
 
where 
 

(ݔ)ݐ  = 	ቐ ቀ1 + ߛ ௫ିఓఙ ቁିଵ ఊൗ ߛ				, ് 0݁ି(௫ିఓ) ఙ⁄ ߛ																			,	 = 0	. (11) 

 
A Maximum Log-likelihood estimator (MLE) and a 

Probability Weighted Moments (PWM) estimator are 
introduced in the next subsections, in order to be used in 
real time to estimate the aggregate interference. Hereafter, 
we denote the elements of an interference sample set by ߯ = ଵܺ, ܺଶ, … , ܺ௠. We also consider the ordered sample 
set, which is denoted by ଵܺ,௠ ൑ ⋯ ൑ ܺ௠,௠. 

 

A. Log-Likelihood Estimator 
The log-likelihood function for a sample set ߯ =ሼ ଵܺ, … , ܺ௠ሽ of i.i.d GEV random variables is given by 
 

 
୪୭୥ ௅	(ఙ,ఊ,ఓ)ୀ	ି௠ ୪୭୥ఙିቀభംାଵቁ∑ ୪୭୥ቀଵାఊ೉೔షഋ഑ ቁ೘೔సభି∑ ୪୭୥ቀଵାఊ೉೔షഋ഑ ቁషభ ംൗ೘೔సభ  (12) 

 
under the condition 1 + ߛ ௑೔ିఓఙ ൐ 0. The MLE estimator (ߪ,ෝ ,ොߛ ,ߪ) for (ߤ̂ ,ߛ  .is obtained by maximizing (12) (ߤ
 

B. PWM Estimator 
As described in [13], the PWM of a random variable ܺ 

with distribution function ܨ(ܺ) = ܲ(ܺ ൑  are the (ݔ
quantities 

 
௣,௥,௦ܯ  = Eൣܺ௣൫ܨ(X)൯௥൫1 −  , (13)	൯௦൧(X)ܨ

 
for real ݎ ,݌ and ݏ values. For the GEV distribution, [14] 
shows that Eൣܺ	൫ܨ(X)൯௥൧ can be written as 
 
ଵ,௥,଴ܯ  = ଵ௥ାଵ ቄߤ − ఙఊ ሾ1 − ݎ) + 1)ఊΓ(1 −  ሿቅ, (14)(ߛ
 
with	ߛ ൏ 1 and ߛ ് 0.The PMW estimators (ߪ,ෝ ,ොߛ  of (ߤ̂
the GEV parameters (ߪ, ,ߛ  are the solution of the (ߤ
following system of equations 

۔ۖەۖ
ۓ ଵ,଴,଴ܯ = ߤ − ఙఊ 	(1 − Γ(1 − ଵ,ଵ,଴ܯ2((ߛ − ଵ,଴,଴ܯ = 	 ఙఊ Γ(1 − 2ఊ)	(ߛ − 1)ଷெభ,మ,బିெభ,బ,బଶெభ,భ,బିெభ,బ,బ = 	 ଷംିଵଶംିଵ

, (15) 

 
in which ܯଵ,௥,଴ can be replaced by the unbiased estimator 
proposed in [15] 
 

෡ଵ,௥,଴ܯ  = ଵ௠∑ ቀ∏ ௝ି௟௠ି௟௥௟ୀଵ ቁ ௝ܺ,௠௠௝ୀଵ . (16) 
 
C. Simulation Results 
Figure 3 presents the simulation results obtained for the 

same scenarios adopted in Figure 2. The “Simulation” 
curve represents the CDF obtained with the entire set of 
samples (3 × 10଺ samples). To apply the MLE and the 
PWM estimators in real time we have considered a sample 
set ߯ considering݉ = 100 samples. The estimators were 
computed for 20 different sets of samples, thus 20 
different CDFs were computed (one per set). The CDF 
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presented in Figure 3 is the average of the 20 CDFs 
computed for each sample set. The correlation of the 
samples of each sample set was in the interval [0.9020, 
0.9339]. 

 

 
Fig. 3 Simulation results obtained with the MLE and 

PWM estimators for Radio scenario 1. 
 

Regarding the accuracy of the proposed estimators, for 
the radio scenario 1 considered in Figure 3 both MLE and 
PWM estimators present high accuracy. This fact is due to 
the standard deviation value σξdB. For higher values of 
σξdB, the accuracy of the PWM estimator is higher than the 
MLE. From the results depicted in Figure 3, we may 
observe that the accuracy of the estimators is maintained 
for different mobility parameters. As a final remark, the 
results presented in Figure 3 validate the proposed 
estimation methodologies, being the PWM estimator more 
adequate for the real-time estimation due to its higher 
accuracy. Finally, we highlight that approximate results 
were observed for smaller sample set sizes using the PWM 
estimator, and similar results may be achieved using only 
m = 10 samples per sample set, which is a remarkably low 
number of samples.  

V. CONCLUSIONS 
In this work we consider an ad hoc network where the 

nodes move according to the Random Waypoint mobility 
model. Assuming a time-varying wireless channel due to 
slow and fast fading and, considering the dynamic path 
loss due to the mobility of the nodes, we start by 
characterizing the interference distribution caused to a 
receiver by the moving interferers located in a ring. The 
simulation results confirm that the distribution of the 
aggregated interference may be accurately approximated 
by a Generalized Extreme Value distribution. Based on the 
interference distribution, two different methodologies 
based on a MLE and a PWM estimators were assessed to 
estimate the interference in real-time. The accuracy of the 
results achieved with the proposed methodologies shows 
that they may used as an effective tool of interference 
estimation in future wireless communication systems. 
Moreover, the low number of required samples constitutes 
one of the advantages of the proposed PWM estimator, 
even when the samples are highly correlated. 
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